Hexanol and lidocaine affect the oligomeric state of the Ca-ATPase of sarcoplasmic reticulum.

Biochemistry

Department of Molecular Physiology & Biological Physics, University of Virginia, Charlottesville 22908.

Published: November 1994

Hexanol at 7 degrees C stimulates the activity of the Ca-ATPase of sarcoplasmic reticulum (SR). Time-resolved phosphorescence spectroscopy studies of SR whose Ca-ATPase is covalently labeled with erythrosin isothiocyanate (ERITC) indicate that at 7 degrees C hexanol (1) cause a concentration-dependent increase in the rate of decay of phosphorescence anisotropy, (2) causes larger oligomers of Ca-ATPase to dissociate into smaller oligomers, and (3) increases the rotational mobility of Ca-ATPase in all its oligomeric states. Electron paramagnetic resonance (EPR) spectroscopy of spin-labeled stearic acid (SASL) in SR suggests that at 7 degrees C hexanol diminishes the fraction of SR lipids in the boundary lipid domain and disorders and fluidizes both the boundary lipid and the unrestricted lipid domain. In protein-free liposomes of extracted SR lipids hexanol increases fluidity and decreases order to a greater extent near the center of the lipid bilayer than near the polar head groups. At 25 degrees C hexanol has biphasic effects on Ca-ATPase activity: at 10 and 20 mM hexanol increases activity, but at 30 mM and especially at 40 mM there is inhibition of Ca-ATPase activity. The influence of hexanol at 25 degrees C on the oligomeric state of Ca-ATPase is also biphasic. At 10 and 20 mM, hexanol promotes the dissociation of larger oligomers into smaller ones, whereas at higher concentrations, 30 and 40 mM, hexanol causes larger oligomers to be formed from smaller ones. Lidocaine at 25 degrees C inhibits Ca-ATPase activity and causes dramatic slowing of the decay of phosphorescence anisotropy of ERITC-labeled SR by causing the formation of larger oligomers of Ca-ATPase from smaller ones. In protein-free liposomes of SR lipids at 25 degrees C, lidocaine disorders and fluidizes the acyl chains near the center of the bilayer (as did hexanol), but has opposite effects near the polar head groups. The opposite effects of hexanol and lidocaine on the oligomeric state of the SR Ca-ATPase provide a new molecular explanation for the opposite effects of hexanol and lidocaine on the activity of the Ca-ATPase. We conclude that the biphasic effects of hexanol on the activity of Ca-ATPase can be accounted for by biphasic effects of hexanol on the oligomeric state of the Ca-ATPase. This study supports the view that anesthetics can alter interactions between membrane proteins.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi00249a007DOI Listing

Publication Analysis

Top Keywords

oligomeric state
16
state ca-atpase
16
larger oligomers
16
effects hexanol
16
hexanol
15
ca-atpase
14
hexanol lidocaine
12
activity ca-atpase
12
degrees hexanol
12
biphasic effects
12

Similar Publications

Many bacteriophages modulate host transcription to favor expression of their own genomes. Phage satellite P4 polarity suppression protein, Psu, a building block of the viral capsid, inhibits hexameric transcription termination factor, ρ, by presently unknown mechanisms. Our cryogenic electron microscopy structures of ρ-Psu complexes show that Psu dimers clamp two inactive, open ρ rings and promote their expansion to higher-oligomeric states.

View Article and Find Full Text PDF

Elucidating the interaction between membrane proteins and antibodies requires whole-cell imaging at high spatiotemporal resolution. Lattice light-sheet (LLS) microscopy offers fast volumetric imaging but suffers from limited spatial resolution. DNA-based point accumulation for imaging in nanoscale topography (DNA-PAINT) achieves molecular resolution but is restricted to two-dimensional imaging owing to long acquisition times.

View Article and Find Full Text PDF

Background: Regional distribution of neurofibrillary tangles consisting of hyperphosphorylated tau correlates strongly with the progression of Alzheimer's disease (AD). Misfolded proteopathic tau templates the conversion of naive tau into a pathological state in a prion-like fashion, which underlies the spreading of tau pathology in the brain. Whether hyperphosphorylation triggers tau aggregation or hyperphosphorylation occurs after aggregation is under much debate.

View Article and Find Full Text PDF

Dynamic transitions of initiator binding coordinate the replication of the two chromosomes in Vibrio cholerae.

Nat Commun

January 2025

Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, Paris, France.

The replication of the two chromosomes in the pathogenic bacterium Vibrio cholerae is coordinated by the binding of initiator protein RctB to a checkpoint sequence, crtS. Replication of crtS on the primary chromosome (Chr1) triggers replication of the secondary chromosome (Chr2), but the details are poorly understood. Here, we analyze RctB binding patterns in the V.

View Article and Find Full Text PDF

GntR/FadR family featuring an N-terminal winged helix-turn-helix DNA-binding domain and a C-terminal α-helical effector-binding and oligomerization domain constitutes one of the largest families of transcriptional regulators. Several GntR/FadR regulators govern the metabolism of sugar acids, carbon sources implicated in bacterial-host interactions. Although effectors are known for a few sugar acid regulators, the unavailability of relevant structures has left their allosteric mechanism unexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!