Three secreted acid phosphatases had previously been characterized from Aspergillus ficuum grown under conditions of limited phosphate. One of these could not be readily separated from AFPhyB, a pH 2.5 optimum acid phosphatase with phytase activity. From extensive protein sequence analysis and subsequent cloning of the gene, we have shown that the AFPhyB protein fraction contains a fourth secreted acid phosphatase (AFPhoA) that has 64% homology to a phosphate-repressible acid phosphatase from Penicillium chrysogenum. Garnier plot analysis revealed that the putative phosphate catalytic domain of AFPhoA at His215Asp216 is similar to those of other acid phosphatases, but that AFPhoA lacks the phosphate-binding motif RHGXRXP of known histidine phosphatases.

Download full-text PDF

Source
http://dx.doi.org/10.1006/bbrc.1994.2426DOI Listing

Publication Analysis

Top Keywords

acid phosphatase
16
aspergillus ficuum
8
penicillium chrysogenum
8
secreted acid
8
acid phosphatases
8
acid
6
phosphatase aspergillus
4
ficuum homology
4
homology penicillium
4
chrysogenum phoa
4

Similar Publications

Metabolic reprogramming of purine biosynthesis is a hallmark of cancer metabolism and represents a critical vulnerability. The enzyme phosphoribosylformylglycinamidine synthase (PFAS) catalyzes the fourth step in de novo purine biosynthesis and has been demonstrated to be prognostic for survival of liver cancer. Despite the importance of this protein as a drug target, there are no known specific inhibitors of PFAS activity.

View Article and Find Full Text PDF

Enhancing Miscanthus floridulus remediation of soil cadmium using Beauveria bassiana FE14: Plant growth promotion and microbial interactions.

Ecotoxicol Environ Saf

January 2025

College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; Yuelushan Laboratory, Changsha 410125, China. Electronic address:

Soil heavy metal pollution presents substantial risks to food security and human health. This study focused on the efficiency of plant growth-promoting fungus-Beauveria bassiana FE14 and Miscanthus floridulus on the synergistic remediation of soil Cd contamination. Results revealed that B.

View Article and Find Full Text PDF

The vacuole is an important site for RNA degradation. Autophagy delivers RNA to the vacuole, where the vacuolar T2 RNase Ribonuclease 2 (RNS2) plays a major role in RNA catabolism. The presumed products of RNS2 activity are 3'-nucleoside monophosphates (3'-NMPs).

View Article and Find Full Text PDF

Combined Analysis of the Leaf Metabolome, Lipidome, and Candidate Gene Function: Insights into Genotypic Variation in Phosphorus Utilization Efficiency in .

J Agric Food Chem

January 2025

School of Tropical Agriculture and Forestry & Sanya Institute Breeding and Multiplication, Hainan University, Haikou/Sanya 570228/572025, China.

Stylo () exhibits excellent tolerance to low-phosphate (Pi) availability, but the underlying mechanisms responsible for improving the phosphorus (P) utilization efficiency (PUE) remain unclear. This study employed metabolomics, lipidomics, and gene expression analyses to investigate the differential responses to low-Pi stress between the high-PUE genotype CF047827 and the cultivar Reyan No. 2.

View Article and Find Full Text PDF

Extracellular vesicles released by the protozoan parasite display immunomodulatory properties towards mammalian immune cells. In this study, we have evaluated the potential of extracellular vesicles derived from the non-pathogenic protozoan towards the development of a vaccine adjuvant. As a proof of concept, we expressed in a codon-optimized SARS-CoV-2 Spike protein fused to the secreted acid phosphatase signal peptide in the N-terminal and to a 6×-His stretch in the C-terminal.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!