It has been shown that inactivation of several enzymes precedes overall conformational changes of the enzyme molecules as a whole during denaturation [Tsou (1993) Science, 262, 380-381]. However, the relation between inactivation, loss of allosteric properties of oligomeric enzymes and unfolding of the enzyme molecule during denaturation remain little explored. These have now been compared for D-glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and fructose-1,6-bisphosphatase (FruP2ase) during denaturation by guanidinium chloride (GdmCl). GAPDH is completely inactivated at 0.3 M GdmCl but at this GdmCl concentration it still binds NAD+ with negative co-operativity. At 0.4 M GdmCl, inactivation of FruP2ase reaches completion whereas its allosteric properties, including the heterotropic effect of AMP inhibition and K+ activation with positive co-operativity, are only partially affected. Much higher GdmCl concentrations are required to bring about unfolding of the overall structures of both enzymes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1137582PMC
http://dx.doi.org/10.1042/bj3030241DOI Listing

Publication Analysis

Top Keywords

allosteric properties
12
d-glyceraldehyde-3-phosphate dehydrogenase
8
denaturation guanidinium
8
guanidinium chloride
8
gdmcl
5
inactivation
4
inactivation precedes
4
precedes changes
4
changes allosteric
4
properties conformation
4

Similar Publications

Graves' disease is caused by overactivation of the thyroid-stimulating hormone receptor (TSHR). One approach for its treatment may be the use of negative allosteric modulators (NAM) of TSHR, which normalize TSHR activity and do not cause thyroid hormone (TH) deficiency. The aim of the work was to study the effect of a new compound 5-amino-4-(4-bromophenyl)-2-(methylthio)thieno[2,3-d]pyrimidine-6-carboxylic acid N-tert-butylamide (TPY4) on the basal and TSH-stimulated TH production in cultured FRTL-5 thyrocytes and on basal and thyrotropin-releasing hormone (TRH)-stimulated TH levels in the blood of rats.

View Article and Find Full Text PDF

Hinokinin Decreases Methamphetamine-Induced Hyperlocomotion via the Regulatory Effects on Dopamine Levels.

ACS Chem Neurosci

January 2025

College of Pharmacy, Chungbuk National University, 194-31 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do 28160, Republic of Korea.

The global abuse of stimulant methamphetamine (METH) imposes a significant social burden. Despite this, effective therapeutic interventions for mitigating the harmful effects associated with METH-induced central nervous system (CNS) stimulation remain elusive. (hinoki), containing hinokinin as its active constituent, has been identified to exhibit CNS depressant properties.

View Article and Find Full Text PDF

Voltage-gated ion channels (VGICs) are allosterically modulated by glycosaminoglycan proteoglycans and sialic acid glycans. However, the structural diversity and heterogeneity of these biomolecules pose significant challenges to precisely delineate their underlying structure-activity relationships. Herein, we demonstrate how heparan sulfate (HS) and sialic acid synthetic glycans appended on amphiphilic glycopeptide backbone influence cell membrane persistence and modulate the gating of the Kv2.

View Article and Find Full Text PDF

Allosteric regulation is a powerful mechanism for controlling the efficiency of enzymes. Deciphering the evolutionary mechanisms by which allosteric properties have been acquired in enzymes is of fundamental importance. We used the malate (MalDH) and lactate deydrogenases (LDHs) superfamily as model to elucidate this phenomenon.

View Article and Find Full Text PDF

Targeting the activated allosteric conformation of the endothelin receptor B in melanoma with an antibody-drug conjugate: mechanisms and therapeutic efficacy.

BJC Rep

January 2025

Université Paris-Saclay, CEA, INRAE, Médicaments et Technologies pour la Santé (MTS), SPI, Laboratoire d'Etude de l'Unité Neurovasculaire et Innovation Thérapeutique (LENIT), Gif-sur-Yvette, France.

Background: Endothelin 1 receptors are one of the drivers of tumor progression in many cancers. Inhibition of their signaling pathways with antagonist drugs has been the subject of numerous clinical trials, but the results have not met expectations probably due to the high endothelin concentrations in the tumor microenvironment and their unusually high affinity for their receptors.

Methods: We previously reported the rendomab B49 antibody (RB49) exhibiting a preferential affinity for the activated conformation of human endothelin B receptor (ET), not displaced by high endothelin levels, and without any pharmacological properties that could inhibit the division of melanoma cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!