Preparation and characterization of novel substrates of insulin proteinase (EC 3.4.99.45).

Biochem J

Département de Biochimie Médicale, C.M.U., Geneva, Switzerland.

Published: September 1994

The specificity of insulin proteinase (EC 3.4.99.45) has been difficult to categorize using only its natural substrates. By exploiting the fact that two substrates competing for the same enzyme inhibit one another, we have found some new substrates of the insulin proteinase from porcine muscle. Two of these substrates, a tryptic fragment of BSA and a fragment of cytochrome c, have been shown to be cleaved at a single site. The albumin fragment, as well as another fragment of cytochrome c., have susceptibilities (Vmax/Km) comparable with that of insulin. In a second aspect of the study, the porcine-muscle enzyme was shown to be related to other members of its superfamily in that it was immunoprecipitated by a monoclonal antibody raised against the insulin-degrading enzyme from human red blood cells and has the same cleavage sites on insulin as has the rat skeletal-muscle insulin proteinase. We note, however, a possible discrepancy between our results and those of another group regarding the subunit size (110 kDa) of the immunoprecipitated material.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1137316PMC
http://dx.doi.org/10.1042/bj3020907DOI Listing

Publication Analysis

Top Keywords

insulin proteinase
16
substrates insulin
8
proteinase 349945
8
fragment cytochrome
8
insulin
6
substrates
5
preparation characterization
4
characterization novel
4
novel substrates
4
proteinase
4

Similar Publications

Background: The determinants of differences in host infectivity among Cryptosporidium species and subtypes are poorly understood. Results from recent comparative genomic studies suggest that gains and losses of multicopy subtelomeric genes encoding insulinase-like proteases (INS-19 and INS-20 in Cryptosporidium parvum and their orthologs in closely related species) may potentially contribute to these differences.

Methodology/principal Findings: In this study, we investigated the expression and biological function of the INS-19 and INS-20 of C.

View Article and Find Full Text PDF

Applications of MicroED in structural biology and structure-based drug discovery.

Biochim Biophys Acta Gen Subj

January 2025

Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan. Electronic address:

Microcrystal electron diffraction (MicroED) is an emerging method for the structure determination of proteins and peptides, enzyme-inhibitor complexes. Several structures of biomolecules, including lysozyme, proteinase K, adenosine receptor A2A, insulin, xylanase, thermolysin, DNA, and Granulovirus occlusion bodies, have been successfully determined through MicroED. As MicroED uses very small crystals for structure determination, therefore, it has several advantages over conventional X-ray diffraction methods.

View Article and Find Full Text PDF

The increasing prevalence of diabetes and its related cognitive impairments is a significant public health concern. With limited clinical treatment options and an incomplete understanding of the underlying mechanisms, traditional Chinese medicine (TCM) Naofucong is proposed as a potential neuroprotective agent against diabetic cognitive impairment (DCI). This study aims to investigate the therapeutic mechanisms of Naofucong in DCI.

View Article and Find Full Text PDF

Insulin-degrading enzyme regulates insulin-directed cellular autoimmunity in murine type 1 diabetes.

Front Immunol

November 2024

Université Paris Cité, Institut National de la Santé et Recherche Médicale (INSERM), Centre National de La Recherche Scientifique (CNRS), Institut Necker Enfants Malades, Paris, France.

Type 1 diabetes results from the destruction of pancreatic beta cells by autoreactive T cells. As an autoantigen with extremely high expression in beta cells, insulin triggers and sustains the autoimmune CD4 and CD8 T cell responses and islet inflammation. We have previously shown that deficiency for insulin-degrading enzyme (IDE), a ubiquitous cytosolic protease with very high affinity for insulin, induces endoplasmic reticulum (ER) stress and proliferation in islet cells and protects non-obese diabetic mice (NOD) from diabetes.

View Article and Find Full Text PDF

Mapping Protein Conformational Landscapes from Crystallographic Drug Fragment Screens.

J Chem Inf Model

December 2024

Department of Molecular & Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, United States.

Proteins are dynamic macromolecules. Knowledge of a protein's thermally accessible conformations is critical to determining important transitions and designing therapeutics. Accessible conformations are highly constrained by a protein's structure such that concerted structural changes due to external perturbations likely track intrinsic conformational transitions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!