Induction of differentiation and covalent binding to proteins by the synthetic retinoids Ch55 and Am80.

Arch Biochem Biophys

Laboratory of Biological Chemistry, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892.

Published: October 1994

all-trans-Retinoic acid (RA) is a potent inducer in vitro of the differentiation of the human acute myeloid leukemia cell line HL60. A mechanism for RA-induced differentiation of HL60 cells may involve retinoylation (RA acylation) which is a post-translational modification of proteins occurring in many eukaryotic cell lines. Here, we found that differentiation by the synthetic retinoid (E)4-[3-(3,5-di-tert-butylphenyl)-3-oxo-1-propenyl]-benzoic acid (Ch55) was dose-dependent in serum-free medium. The synthetic retinoid 4(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-naphthalenylcarbamoyl) benzoic acid (Am80) did not induce differentiation. Ch55 bound covalently to proteins of HL60 cells. In contrast, covalent binding of Am80 to HL60 proteins was much lower. Two-dimensional gel electrophoresis patterns of proteins labeled covalently by RA and Ch55 were different with few proteins labeled by both retinoids. The level of retinoylation was increased by Am80 and combinations of RA with either Ch55 or Am80 synergistically induced differentiation of HL60 cells. These results suggest that covalent modification of proteins by a retinoid may play a role in inducing differentiation of HL60 cells. In addition, the synergy seen with combinations of RA and either Ch55 or Am80 suggests that some synthetic retinoids may be active because they displace RA from intracellular sites or because they inhibit RA catabolism.

Download full-text PDF

Source
http://dx.doi.org/10.1006/abbi.1994.1414DOI Listing

Publication Analysis

Top Keywords

hl60 cells
16
ch55 am80
12
differentiation hl60
12
covalent binding
8
synthetic retinoids
8
modification proteins
8
synthetic retinoid
8
proteins labeled
8
combinations ch55
8
proteins
7

Similar Publications

Sodium hyaluronate microcapsules to promote antitumor selectivity of anacardic acid.

Int J Biol Macromol

January 2025

Laboratory of Polymers and Materials Innovation, Department of Organic and Inorganic Chemistry, Federal University of Ceará, Campus of Pici, 60440-900 Fortaleza, CE, Brazil. Electronic address:

Anacardic acid (AA) is a phenolic lipid extracted from cashew nutshell liquid that has antitumor activity. Given the high hydrophobicity of this compound and aiming to create efficient vehicle for its administration in aqueous systems, the objective of the present work was to develop a microcapsule (MCAA) by spray dryer technique, based on the polysaccharide sodium hyaluronate (SH), containing AA as its core, encapsulated from nanoemulsion. The Encapsulation Efficiency of MCAA presented a value equal to 95.

View Article and Find Full Text PDF

Tetrabromobisphenol A, but not bisphenol A, disrupts plasma membrane homeostasis in myeloid cell models - A novel threat from an established persistent organic pollutant.

Sci Total Environ

January 2025

Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland; Laboratory of Transcriptional Regulation, Institute of Medical Biology PAS, Lodz, Poland. Electronic address:

Article Synopsis
  • The study investigates the effects of Bisphenol A (BPA) and Tetrabromobisphenol A (TBBPA) on the dynamics of biological membranes, focusing on how these persistent organic pollutants impact myeloid cell lines.
  • It was found that TBBPA specifically disrupts the plasma membrane's biophysical homeostasis, increasing mobility and decreasing order, while BPA showed no significant effects.
  • The findings highlight TBBPA's potential to impair immune function, emphasizing the environmental toxicity concerns associated with persistent organic pollutants.
View Article and Find Full Text PDF

Oncostatin M (OSM) plays a crucial role in diverse inflammatory reactions. Although the food bioactive compound naringenin (NAR) exerts various useful effects, including antitussive, anti-inflammatory, hepatoprotective, renoprotective, antiarthritic, antitumor, antioxidant, neuroprotective, antidepressant, antinociceptive, antiatherosclerotic, and antidiabetic effects, the modulatory mechanism of NAR on OSM expression in neutrophils has not been specifically reported. In the current work, we studied whether NAR modulates OSM release in neutrophil-like differentiated (d)HL-60 cells.

View Article and Find Full Text PDF

Ten coordination compounds, [Cu(L)Cl] (), [Cu(L)NO] (), [Cu(L)Cl] (C3), [Cu(L)NO] (), [Cu(L)Cl] (), [Cu(L)NO] (), [Cu(L)NO] (), [Cu(L)Cl] (), [Cu(L)Cl] (), and [Cu(L)NO] (), containing pyridine derivatives of -methoxyphenyl-thiosemicarbazones were synthesized and characterized. The molecular structure of four compounds was investigated using single crystal X-ray diffraction. Spectral analysis techniques such as FT-IR, H NMR, C NMR, elemental analysis, and molar conductivity were used for all the synthesized compounds.

View Article and Find Full Text PDF

Synthetic Studies on Vitamin D Derivatives with Diverse but Selective Biological Activities.

Chem Pharm Bull (Tokyo)

January 2025

Faculty of Pharmaceutical Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan.

Article Synopsis
  • A-ring modifications in 1α,25-dihydroxyvitamin D enhance its binding to the vitamin D receptor (VDR) and increase its stability in cells by resisting metabolism, leading to longer-lasting effects.
  • Various modified A-ring precursors synthesized from d-glucose showed specific biological activities with minimal calcemic side effects, including MART-10's potent antitumor effects in cancer models and AH-1's superior bone-forming properties in osteoporosis models compared to natural vitamin D.
  • Ongoing research includes developing a library of fluorinated vitamin D analogs with potential anti-inflammatory effects and therapeutic applications for conditions like psoriasis, alongside the creation of the VDR-silent analog KK-052, which selectively inhibits SREBP/SC
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!