Recent determinations of the minimum alveolar anesthetic concentration (MAC) for nitrous oxide in rats yield values of 1.51-1.55 atm. When combined with results from other reports, these results suggest a deviation from linear additivity, and call into question the unitary theory of narcosis. The present report provides evidence that nitrous oxide does act in an additive manner. We directly determined the MAC for nitrous oxide in groups of 10 Sprague-Dawley and Long-Evans rats, using electrical stimulation of the tail or abdomen. MAC equaled 2.35 +/- 0.20 atm (mean +/- SD) in Long-Evans rats with tail stimulation; 2.21 +/- 0.19 in Sprague-Dawley rats using tail stimulation; and 1.99 +/- 0.21 atm in Sprague-Dawley rats using abdominal stimulation (tail versus abdominal stimulation was significantly different). Our MAC values are higher than those recently reported by others. Differences from the previous reports may be explained by differences in experimental design or interpretation. Our findings are consistent with an additive effect of nitrous oxide with other inhaled anesthetics (data from other reports) and thereby support the unitary theory of narcosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1213/00000539-199410000-00016 | DOI Listing |
Water Res
December 2024
Department of Environmental and Resource Engineering, Technical University of Denmark, Bygningstorvet, Bygning 115, 2800 Kgs, Lyngby, Denmark. Electronic address:
Groundwater, essential for ecological stability and freshwater supply, faces escalating nitrate contamination. Traditional biological methods struggle with organic carbon scarcity and low temperatures, leading to an urgent need to explore efficient approaches for groundwater remediation. In this work, we proposed an inorganic bioelectric system designed to confront these challenges.
View Article and Find Full Text PDFJ Environ Qual
January 2025
IFEVA, CONICET, Universidad de Buenos Aires, Facultad de Agronomía, Buenos Aires, Argentina.
Atmospheric nitrous oxide (NO) is a potent greenhouse gas, with long atmospheric residence time and a global warming potential 273 times higher than CO. NO emissions are mainly produced from soils and are influenced by biotic and abiotic factors that can be substantially altered by anthropogenic activities, such as land uses, especially when unmanaged natural ecosystems are replaced by croplands or other uses. In this study, we evaluated the spatial variability of NO emissions from croplands (maize, soybean, wheat, and sugar cane crops), paired with the natural grasslands or forests that they replaced across a wide environmental gradient in Argentina, and identified the key drivers governing the spatial variability of NO emissions using structural equation modeling.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Department of Zoology and Animal Ecology, University of Life Sciences in Lublin, Akademicka 13, 20-950, Lublin, Poland.
Soil microorganisms are essential for maintaining ecosystem functionality, particularly through their role in the nitrogen (N) biogeochemical cycle. Thus, they also contribute to greenhouse gas emissions from soils. Microorganisms are sensitive indicators of soil health, as they respond rapidly to disturbances caused by factors like unsustainable agricultural practices or industrial activities, such as mining.
View Article and Find Full Text PDFCureus
November 2024
Internal Medicine, Methodist Dallas Health System, Dallas, USA.
This case report describes a 31-year-old male who developed subacute combined degeneration as a result of vitamin B12 deficiency caused by recreational use of nitrous oxide ("whippets") over a six-month period. nitrous oxide, widely available and often used for its euphoric effects, can lead to alterations in B12 metabolism and decreased myelination, particularly in the dorsal columns, with prolonged use. Despite prompt diagnosis and treatment, including intramuscular B12 injections and physical therapy, he experienced residual weakness and required outpatient rehabilitation.
View Article and Find Full Text PDFHorizontal subsurface flow constructed wetlands (HFCWs) are capable of eliminating organic matter and nitrogen while emitting less methane (CH) and nitrous oxide (NO) than free water surface flow wetlands. However, the simultaneous removal of pollutants and reduction of greenhouse gases (GHG) emissions from high-strength wastewater containing high levels of organic matter and ammonium nitrogen (NH-N) has not get been investigated. The influent COD concentration affected the efficiency of nitrogen removal, GHG emissions and the presence of iron from iron ore, but the COD and TP removal efficiencies remained unaffected.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!