A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Insulinotropic action of glutamic acid dimethyl ester. | LitMetric

Glutamic acid dimethyl ester (GME; 3.0-10.0 mM) enhanced insulin release evoked by 6.0-8.3 mM D-glucose, 1.0-10.0 mM L-leucine, or 5.0-10.0 mM 2-amino-bicyclo(2,2,1)heptane-2-carboxylic acid, causing a shift to the left of the sigmoidal relationship between insulin output and D-glucose concentration. In the absence of D-glucose, GME also unmasked the insulinotropic potential of glibenclamide. In islets exposed to L-leucine, the insulinotropic action of GME coincided with an early fall and later increase in 86Rb outflow and augmentation of 45Ca outflow from prelabeled islets. The measurement of O2 uptake, NH4+ output, production of 14CO2 from islets prelabeled with [U-14C]palmitate, generation of 14C-labeled amino acids and 14CO2 from the dimethyl ester of either L-[1-14C]glutamic acid or L-[U-14C]glutamic acid, and D-[2-14C]glucose as well as D-[6-14C]glucose oxidation in the presence or absence of GME indicated that the latter ester was efficiently converted to L-glutamate and its further metabolites. The overall gain in O2 uptake represented the balance between GME oxidation and its sparing action on the catabolism of endogenous fatty acids and exogenous D-glucose. It is proposed that GME might represent a new tool to bypass beta-cell defects in D-glucose transport, phosphorylation, and further metabolism and, hence, to stimulate insulin release in experiments conducted in animal models of non-insulin-dependent diabetes mellitus.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpendo.1994.267.4.E573DOI Listing

Publication Analysis

Top Keywords

dimethyl ester
12
insulinotropic action
8
glutamic acid
8
acid dimethyl
8
insulin release
8
gme
6
acid
5
d-glucose
5
action glutamic
4
ester
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!