6-Allyl-5,6-dihydro-5-hydroxypyran-2-one, a lactone produced by a new Drechslera species: specified 1H and 13C NMR assignments, mutagenic and immunomodulating testings.

Pharmazie

Groupe pour l'Etude du Devenir des Xénobiotiques dans l'Environnement (GEDEXE), UFR de Pharmacie, Meylan, France.

Published: August 1994

A lactone (6-allyl-5,6-dihydro-5-hydroxypyran-2-one) was isolated from a new Drechslera sp. 1H and 13C NMR assignments, not previously specified, are published. No mutagenic activity on Ames/Salmonella test (strains TA98 and TA100 has been observed. Results on the respiratory metabolism of J774.1 murine macrophage indicate that the lactone might exhibit immunomodulating activity as a function of time of cellular contact and of concentration.

Download full-text PDF

Source

Publication Analysis

Top Keywords

13c nmr
8
nmr assignments
8
6-allyl-56-dihydro-5-hydroxypyran-2-one lactone
4
lactone produced
4
produced drechslera
4
drechslera species
4
species 13c
4
assignments mutagenic
4
mutagenic immunomodulating
4
immunomodulating testings
4

Similar Publications

Fabrication of oat β-glucan-starch composite systems by sequential extraction as batters for deep-fried mushrooms to prevent oil penetration.

Food Chem

January 2025

Department of Food Science, College of Light Industry, Liaoning University, Shenyang 110031, Liaoning Province, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning Province, China; State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi Province, China. Electronic address:

Deep-fat frying (DF) of mushrooms is favored by consumers due to its appealing sensory characteristics. However, their high oil absorption can lead to obesity and elevated cholesterol levels. Therefore, developing healthy food coatings as oil barriers and water-holding layers is essential.

View Article and Find Full Text PDF

Synthesis and diverse crystal packing in o-, m- and p-bis(carbonylthioureido)benzenes containing bisferrocenes.

Acta Crystallogr C Struct Chem

February 2025

Institute of Applied Chemistry, Shanxi University, Wucheng, Taiyuan, Shanxi 030006, People's Republic of China.

Three bisferrocene-based bis(acylthiourea) positional isomers, namely, 1,2-bis(ferrocenylcarbonylthioureido)benzene (1), 1,3-bis(ferrocenylcarbonylthioureido)benzene (2) and 1,4-bis(ferrocenylcarbonylthioureido)benzene (3), all [Fe(CH)(CHNOS)], have been synthesized via facile nucleophilic addition reactions of 2.3 equivalents of ferrocenoyl isothiocyanate with o-, m- and p-phenylenediamine, respectively. The structures of the three new synthesized isomers were fully characterized by H NMR, C NMR, IR and UV-Vis spectroscopy, elemental analyses and cyclic voltammetry.

View Article and Find Full Text PDF

Introduction: Quinazoline holds significant importance in pharmaceutical chemistry, which is included in a range of drugs, clinical contenders, and bioactive compounds. N-contain-ing heterocyclic compounds of quinazoline have a wide and distinct range of biopharmaceutical activities.

Methods: A series of newly synthesized heterocyclic compounds, namely, N-(4-substituted ben-zylidene)-2-(2-aminothiazol-4-yl)-6-methylquinazolin-3(4H)-amines (3a'-3e') and N-(4-substi-tuted benzylidene)-2-(2-aminooxazol-4-yl)-6-methylquinazolin-3(4H)-amines (3a-3e), were synthesized starting from 6-methylquinazolin-3(4H)-amine and 4-substituted benzaldehyde and their antibacterial and antifungal properties were evaluated.

View Article and Find Full Text PDF

Background: The search for new antifungal agents is critical due to the rising resistance of fungal pathogens to existing treatments. This study focuses on the synthesis and evaluation of a novel compound, 1-benzyl-5-methyl-1H-pyrazole-3-carboxylic acid (compound L1), as a potential antifungal agent.

Methods: Compound L1 was synthesized and characterized using a range of analytical techniques, including 1H^1H1H NMR, 13C^{13}C13C NMR, FT-IR, GC-MS, and X-ray single crystal diffraction (XRD).

View Article and Find Full Text PDF

Germination under the dark as an efficient method to enrich barley hordatine aglycones and to prepare a hordatine-rich fraction.

Food Chem

January 2025

Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, NC Research Campus, 500 Laureate Way, Kannapolis, North Carolina 28081, United States. Electronic address:

Barley (Hordeum vulgare L.; Poaceae), the second most important grain after wheat, contains phenolamides, specifically hordatines and their agmatinated precursors. Hordatines are the unique compounds found in barley, consumption of which is associated with beneficial effects for human health.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!