The serine-threonine protein kinase Raf-1 is an important signal transducer in mitogenesis, phosphorylating and activating mitogen-activated protein (MAP) kinase kinase. Raf-1 activation in vivo is dependent on Ras, but the mechanism of Raf activation is unknown. The ability of preparations of plasma membranes to activate exogenous (His)6-Raf-1 was studied. Plasma membranes of v-Ras-transformed NIH 3T3 cells, but not parental cells, enhanced MAP kinase kinase kinase (MAPKKK) activity dependent on addition of (His)6-Raf-1 and ATP/Mg. Treatment of membranes with concentrations of Bacillus cereus phosphatidylcholine-specific phospholipase C that activated Raf-1 in vivo failed to enhance MAPKKK activity in vitro. Activation of (His)6-Raf-1 in vitro by membranes was dependent on binding to Ras. Membranes from v-Src-transformed cells also activated (His)6-Raf-1 and synergized with v-Ras membranes. Serum-treatment of NIH 3T3 cells stimulated the ability of membranes to activate (His)6-Raf-1. Activated (His)6-Raf-1 could be recovered on Ni(2+)-agarose, and this methodology was used to demonstrate that activation by membranes was ATP dependent. These findings demonstrate Ras- and ATP-dependent step(s) for Raf-1 activation by plasma membranes in vitro.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC44849 | PMC |
http://dx.doi.org/10.1073/pnas.91.20.9544 | DOI Listing |
Endocr Metab Immune Disord Drug Targets
January 2025
Department of Laboratory Medicine, Taizhou First People's Hospital, Huangyan Hospital of Wenzhou Medical University, Taizhou, Zhejiang, China.
Aim: The aim of this study is to examine the role of the microrchidia (MORC) family, a group of chromatin remodeling proteins, as the therapeutic and prognostic markers for colorectal cancer (CRC).
Background: MORC protein family genes are a highly conserved nucleoprotein superfamily whose members share a common domain but have distinct biological functions. Previous studies have analyzed the roles of MORCs as epigenetic regulators and chromatin remodulators; however, the involvement of MORCs in the development and pathogenesis of CRC was less examined.
Nano Lett
January 2025
Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea.
Analyzing the cell interface is of paramount importance in understanding how cells interact and communicate with other cells, but an advanced analytical platform that can process complex and networked interactions between cell surface ligands and receptors is lacking. Herein, we developed the cell-interface-deciphering lipid nanotablet (CID-LNT) for multiplexed real-time cell analysis. LNT is a nanoparticle-tethered lipid bilayer chip where freely diffusing plasmonic nanoparticles induce scattering signal changes.
View Article and Find Full Text PDFJID Innov
March 2025
Cell Biology & Cutaneous Research, Blizard Institute, Queen Mary University of London, London, United Kingdom.
Junctional epidermolysis bullosa caused by loss-of-function variants in genes encoding the skin basement membrane proteins laminin 332, type XVII collagen, or integrin α6β4 affects patients from birth with severe blistering, eventually leading to scarring and early lethality. In this study, we have optimized a previously published junctional epidermolysis bullosa-knockout mouse model with weekly tamoxifen intraperitoneal injections, resulting in a more controllable and severe model. Owing to the titratable dosing, this model now recapitulates both early and advanced stages of the human disease, strengthening its use in therapeutic studies.
View Article and Find Full Text PDFExtracell Vesicles Circ Nucl Acids
November 2024
Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków 30-387, Poland.
Extracellular vesicles (EVs) are involved in intercellular and interkingdom communication in the complex communities that constitute the niche-specific microbiome of the colonized host. Therefore, studying the structure and content of EVs produced by resident bacteria is crucial to understanding their functionality and impact on the host and other microorganisms. Bacterial EVs were isolated by differential centrifugation, their size and concentration were measured by transmission electron microscopy and nanoparticle tracking analysis, and the cargo proteins were identified by liquid chromatography coupled to tandem mass spectrometry.
View Article and Find Full Text PDFiScience
January 2025
Department of Biology, Graduate School of Science, Chiba University, Chiba 263-8522, Japan.
The regulation of cellular metabolism is crucial for cell survival, with Sch9 in serving a key role as a substrate of TORC1. Sch9 localizes to the vacuolar membrane through binding to PI(3,5)P, which is necessary for TORC1-dependent phosphorylation. This study demonstrates that cytosolic pH regulates Sch9 localization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!