Does general anesthetic-induced desensitization of the Torpedo acetylcholine receptor correlate with lipid disordering?

Mol Pharmacol

Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts.

Published: September 1994

We have tested the hypothesis that general anesthetics stabilize the desensitized state of the nicotinic acetylcholine receptor by disordering its surrounding lipids. Acetylcholine receptor-rich postsynaptic membranes from the electroplaques of Torpedo were used in this study to obtain the highest possible receptor specific activity in native membranes. We examined 18 general anesthetics, including six inhalation agents, eight 1-alcohols, the enantiomers of 2-octanol, and two intravenous general anesthetics (pentobarbital and ethylcarbamate). The degree of desensitization after preincubation with the general anesthetics was determined by brief exposure to [3H]acetylcholine, making use of the facts that desensitized receptors have much higher affinity than do those in the resting state and that interconversion between the states is slow. All of the general anesthetics desensitized the receptor within minutes, exhibiting steep concentration-response curves with Hill coefficients generally within the range of 2-4. At the highest general anesthetic concentrations, almost all receptors were desensitized. The concentrations that desensitized half of the resting state receptors varied by > 3000-fold. The 2-octanol enantiomers were without stereoselectivity. Membrane order was examined in parallel by using spin-labeled fatty acids doped into the native membranes. The spin label 5-doxylpalmitate reported from the most ordered part of the bilayer near the aqueous interface, whereas 12-doxylstearate reported from the less ordered region nearer the center of the bilayer. The spin label deeper in the membranes was 3 times more sensitive to a given anesthetic than was the other probe. At both depths in the membrane general anesthetics decreased lipid order linearly with increasing concentration. The range of disordering potencies (change in order parameter induced by a unit concentration of general anesthetic in the aqueous phase) was 5333 for 5-doxylpalmitate and 7143 for 12-doxylstearate, but the range of disordering compared at equally desensitizing concentrations was reduced by 875- and 1430-fold, respectively. The average degrees of disordering at concentrations that desensitized half of the resting state receptors were 1.5% and 4.4%, respectively. It is unlikely that changes in membrane order parameter per se cause desensitization, because the associated changes in order parameter can be reproduced by changes in cholesterol content or temperature that do not cause desensitization. We conclude that, although there is a strong association between anesthetic-induced membrane disordering and desensitization, more detailed tests of a mechanistic nature will be necessary to elucidate the mechanisms underlying the Meyer-Overton-type behavior we have observed.

Download full-text PDF

Source

Publication Analysis

Top Keywords

general anesthetics
24
resting state
12
order parameter
12
general
9
acetylcholine receptor
8
native membranes
8
general anesthetic
8
concentrations desensitized
8
desensitized half
8
half resting
8

Similar Publications

Fracture surgeries are frequently accompanied by severe pain, necessitating efficacious pain management strategies to enhance postoperative recovery. Nerve block techniques, which are critical in mitigating pain, involve the targeted administration of local anesthetics to disrupt nerve signal transmission, thereby achieving significant analgesia. Traditionally, these techniques rely on anatomical landmarks and the clinician's expertise, which can introduce variability and potential risks.

View Article and Find Full Text PDF

This study assesses the effect of carotid sinus blockade applied with a local anesthetic on hemodynamic parameters during carotid endarterectomy (CEA) operations performed under general anesthesia. The medical records of patients who underwent CEA under general anesthesia between January 2020 and December 2022, were retrospectively reviewed. It was recorded whether the patients received carotid sinus block with 2 mL of 2% prilocaine.

View Article and Find Full Text PDF

Background: Aromatic L-amino acid decarboxylase (AADC) deficiency is a rare life-threatening inborn error of neurotransmitter biosynthesis. It is characterized by deficient biosynthesis of neurotransmitters dopamine and serotonin, leading to catecholamines deficiency and sympathetic deprivation, while the parasympathetic system remains functional. Since 2012, gene therapy has led to clinical improvements in symptoms and motor function with a severe phenotype.

View Article and Find Full Text PDF

Background: Anesthesia can significantly impact positron emission tomography (PET) neuroimaging in preclinical studies. Therefore, understanding these effects is crucial for accurate interpretation of the results. In this experiment, we investigate the effect of [F]-labeled glucose analog fluorodeoxyglucose ([F]FDG) uptake in the brains of rats anesthetized with two commonly used anesthetics for rodents: isoflurane, an inhalation anesthetic, and Hypnorm-Dormicum, a combination injection anesthetic.

View Article and Find Full Text PDF

Adult patients with central airway tumors commonly present with dyspnea on exertion. These patients may remain asymptomatic until more than half of the airway diameter is obliterated. Anesthesia for debulking a central airway tumor is challenging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!