Frequency of deletion formation decreases exponentially with distance between short direct repeats.

Mol Microbiol

Laboratoire de Génétique Microbienne, Institut National de la Recherche Agronomique, Jouy en Josas, France.

Published: May 1994

The effect of distance between 18 bp direct repeats on deletion formation has been examined in Bacillus subtilis. The deletion frequency decreased exponentially by more than 1000-fold as the distance increased from 33 to 2313 bp. This decrease occurred in two distinct phases, which may be determined by DNA-duplex flexibility. A similar relationship between deletion formation and distance was observed in a theta-replicating plasmid and in the chromosome, indicating that this relationship might have a general validity.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1365-2958.1994.tb01042.xDOI Listing

Publication Analysis

Top Keywords

deletion formation
12
direct repeats
8
frequency deletion
4
formation decreases
4
decreases exponentially
4
distance
4
exponentially distance
4
distance short
4
short direct
4
repeats distance
4

Similar Publications

Copy number variations of the human gene, resulting from megabase-scale microdeletions or microduplications in the 3p26.3 region, are frequently implicated in neurodevelopmental disorders such as intellectual disability and developmental delay. However, duplication of the full-length human gene presents with variable penetrance, resulting in phenotypes that range from neurodevelopmental disorders to no visible pathologies, even within the same family.

View Article and Find Full Text PDF

Surfactin is a biosurfactant produced by many strains with a wide variety of functions from lowering surface tension to allowing motility of bacterial swarms, acting as a signaling molecule, and even exhibiting antimicrobial activities. However, the impact of surfactin during biofilm formation has been debated with variable findings between studies depending on the experimental conditions. B.

View Article and Find Full Text PDF

The Fem cell-surface signaling system is regulated by ExsA in and affects pathogenicity.

iScience

January 2025

Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0W2, Canada.

Bacterial interspecies interactions shape microbial communities and influence the progression of polymicrobial infections. FemI-FemR-FemA, a cell-surface signaling system, in , is involved in the uptake of iron-chelating mycobactin produced by spp. In this report, we present the data that indicates the -PA1909 operon is positively regulated by ExsA, a master regulator for the type three secretion system (T3SS), connecting the Fem system with T3SS.

View Article and Find Full Text PDF

Background: Regeneration is the preferred approach to restore the structure and function after tissue damage. Rapid proliferation of cells over the site of damage is integral to the process of regeneration. However, even subtle mutations in proliferating cells may cause detrimental effects by eliciting abnormal differentiation.

View Article and Find Full Text PDF

Malaria is caused by protozoan parasites of the genus Plasmodium and remains a global health concern. The parasite has a highly adaptable life cycle comprising successive rounds of asexual replication in a vertebrate host and sexual maturation in the mosquito vector Anopheles. Genetic manipulation of the parasite has been instrumental for deciphering the function of Plasmodium genes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!