The attachment of encephalomyocarditis (EMC) virus to human nucleated cells susceptible to virus infection was examined with HeLa and K562 cell lines. Both cell types showed specific virus binding competitively blocked by unlabeled virions. The number of binding sites for EMC virus on HeLa and K562 cells were approximately 1.6 x 10(5) and 3.5 x 10(5) per cell, respectively, and dissociation binding constants were 1.1 and 2.7 nM, respectively. Treatment of cells with cycloheximide after pretreatment with trypsin eliminated EMC virus attachment, suggesting that the virus-binding moiety is proteinaceous in nature. Digestion of cells, cell membranes, and sodium deoxycholate-solubilized cell membranes with proteases or neuraminidases or treatment of cells with lectins demonstrated that the EMC virus-cell interaction is mediated by a sialoglycoprotein. Proteins with a molecular mass of 70 kDa were isolated from detergent-solubilized cell membranes of both HeLa and K562 cells by EMC virus affinity chromatography. The purified proteins, as well as their 70-kDa-molecular-mass equivalents detected in intact surface membranes of HeLa and K562 cells, specifically bound EMC virus in a virus overlay protein blot assay, whereas membranes from nonpermissive K562 D clone cells did not. Western immunoblot analysis with glycophorin A-specific antibody confirmed that the identified 70-kDa binding site on K562 cells is not glycophorin A, which is the EMC virus receptor molecule on virus-nonpermissive human erythrocytes (HeLa cells do not express glycophorin A). These results indicate that EMC virus attachment to permissive human cells is mediated by a cell surface sialoglycoprotein(s) with a molecular mass of 70 kDa.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC237172PMC
http://dx.doi.org/10.1128/JVI.68.11.7308-7319.1994DOI Listing

Publication Analysis

Top Keywords

emc virus
28
hela k562
16
k562 cells
16
cells
12
cell membranes
12
virus
11
cell
8
cell surface
8
virus human
8
human nucleated
8

Similar Publications

In RNA interference (RNAi), long double-stranded RNA is cleaved by the Dicer endonuclease into small interfering RNAs (siRNAs), which guide degradation of complementary RNAs. While RNAi mediates antiviral innate immunity in plants and many invertebrates, vertebrates have adopted a sequence-independent response and their Dicer produces siRNAs inefficiently because it is adapted to process small hairpin microRNA precursors in the gene-regulating microRNA pathway. Mammalian endogenous RNAi is thus a rudimentary pathway of unclear significance.

View Article and Find Full Text PDF

Construction and verification of an infectious cDNA clone of encephalomyocarditis virus from pigs.

J Virol Methods

January 2025

Huzhou Key Laboratory of Innovation and Application of Agricultural Germplasm Resources, Huzhou Academy of Agricultural Sciences, Huzhou 313000, China. Electronic address:

In this study, a novel Encephalomyocarditis virus (EMCV) reverse genetic operating system was developed utilizing CMV promoters, enabling EMCV genome expression under the transcriptional control of the CMV immediate early promoter and BGH polyA transcriptional-termination signal. The full-length cDNA of EMCV BJC3 was ligated to the pRK5 vector, incorporating the CMV eukaryotic promoter sequence, resulting in the construction of recombinant plasmid EMCV (pEMCV). Subsequently, the recombinant plasmid was transfected into BHK-21 cells to generate the rescue virus.

View Article and Find Full Text PDF

Flaviviruses utilize the cellular endoplasmic reticulum (ER) for all aspects of their lifecycle. Genome replication and other viral activities take place in structures called replication organelles (ROs), which are invaginations induced in the ER membrane. Among the required elements for RO formation is the biogenesis of viral nonstructural proteins NS4A and NS4B.

View Article and Find Full Text PDF

Optimizing encephalomyocarditis virus VP1 protein assembly on pseudorabies virus envelope via US9 protein anchoring.

Virulence

December 2025

The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China.

Live herpesvirus-vectored vaccines are critical in veterinary medicine, but they can sometimes offer insufficient protection due to suboptimal antigen expression or localization. Encephalomyocarditis virus (EMCV) is a significant zoonotic threat, with VP1 protein as a key immunogen on its capsid. To enhance immunogenicity, we explored the use of recombinant pseudorabies virus (rPRV) as a vaccine vector against EMCV.

View Article and Find Full Text PDF

Medium-chain antimicrobial lipids are promising antiviral agents to inhibit membrane-enveloped viruses such as African swine fever virus (ASFV) and influenza A virus (IAV) in livestock applications. However, current uses are limited to feed pathogen mitigation due to low aqueous solubility and the development of water-dispersible lipid formulations is needed for broader application usage. In this study, we report a water-dispersible antimicrobial lipid mixture of monoglycerides and lactylates that can inhibit ASFV and IAV and exhibits antiviral properties in drinking water and feed matrices.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!