Alzheimer's disease (AD) is characterized by the deposition of amyloid in the extracellular and intracellular compartments of the cerebral cortex. The extracellular amyloid consists of a protein (beta A4) which is derived from a larger precursor, the amyloid protein precursor (APP). Several studies have implicated APP in the regulation of neurite outgrowth during development, although the precise function of APP remains unknown. To examine the role of APP in the regulation of neurite outgrowth from hippocampal neurons, an explant culture system was developed. Explants of E18 mouse hippocampus were found to extend neurites when co-cultured with explants of E18 mouse septum. This finding demonstrated that the septum can release a neurite outgrowth-promoting factor (NOPF). As nerve growth factor (NGF) was also able to stimulate neurite outgrowth from the hippocampal explants, this suggested that the NOPF might be NGF. Immunoprecipitation of NGF from septal conditioned medium using a specific monoclonal antibody (27/21) completely blocked the neurite outgrowth-promoting effect, supporting this conclusion. Concomitant with its ability to stimulate neurite outgrowth, NGF stimulated the release of APP from the hippocampal explants. As previous studies have suggested that the binding of APP to heparan sulfate proteoglycans (HSPGs) in the extracellular matrix might be an important step in the regulation of neurite outgrowth by NGF, we examined the effect of APP on neurite outgrowth from dissociated hippocampal cells cultured on various protein substrates. When cells were cultured on a substrate of APP and HSPG, neurite outgrowth was markedly stimulated. No stimulation of neurite outgrowth was seen when neurons were cultured on substrates of either APP or HSPG alone. The results suggest that secreted forms of APP may be involved in stimulating neurite outgrowth from hippocampal neurons and that interactions between APP and HSPG may be important for a neurite outgrowth-promoting function.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jnr.490380303DOI Listing

Publication Analysis

Top Keywords

neurite outgrowth
40
neurite
13
hippocampal explants
12
regulation neurite
12
outgrowth hippocampal
12
neurite outgrowth-promoting
12
app hspg
12
app
11
outgrowth
10
nerve growth
8

Similar Publications

Primary Neuronal Culture and Transient Transfection.

Bio Protoc

January 2025

Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.

Primary neuronal culture and transient transfection offer a pair of crucial tools for neuroscience research, providing a controlled environment to study the behavior, function, and interactions of neurons in vitro. These cultures can be used to investigate fundamental aspects of neuronal development and plasticity, as well as disease mechanisms. There are numerous methods of transient transfection, such as electroporation, calcium phosphate precipitation, or cationic lipid transfection.

View Article and Find Full Text PDF

Introduction: Neurotrophic factors are widely known for their protective effect on spiral ganglion neurons (SGN) and the protection of these neurons is of great importance to optimize Cochlear Implants, which directly stimulate SGN in deaf patients. Previous studies have identified Cometin - also known as Meteroin-like - to be neuroprotective and beneficial for metabolic disorders. The aim of our study was to investigate the effects of different concentrations of recombinant human Cometin (hCometin) on SGN in regard to neuroprotection and neurite outgrowth and to evaluate its neurite guidance potential using a neurite outgrowth chamber.

View Article and Find Full Text PDF

Autism spectrum disorder (ASD) is linked to ion channel dysfunction, including chloride voltage-gated channel-4 (CLCN4). We generated Clcn4 knockout (KO) mice by deleting exon 5 of chromosome 7 in the C57BL/6 mice. Clcn4 KO exhibited reduced social interaction and increased repetitive behaviors assessed using three-chamber and marble burying tests.

View Article and Find Full Text PDF

After spinal cord injury (SCI), reactive astrocytes in the injured area are triggered after spinal cord injury (SCI) and to polarize into A1 astrocytes with a proinflammatory phenotype or A2 astrocytes with an anti-inflammatory phenotype. Monopolar spindle binder 2 (MOB2) induces astrocyte stellation, maintains cell homeostasis, and promotes neurite outgrowth; however, its role in the phenotypic transformation of reactive astrocytes remains unclear. Here, we confirmed for the first time that MOB2 is associated with A1/A2 phenotypic switching in reactive astrocytes following SCI in mice.

View Article and Find Full Text PDF

Background/objectives: α-Synuclein (α-syn) protein is a major pathological agent of familial Parkinson's disease (PD), and its levels and aggregations determine neurotoxicity in PD pathogenesis. Although the pathophysiological functions of α-syn have been extensively studied, its biological functions remain elusive, and there are reports of wild-type (WT) α-syn and two missense mutations of α-syn (A30P and A53T) inducing protective neuritogenesis through neurite outgrowth. However, the function of another α-syn mutation, E46K, has not been fully elucidated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!