Because of the short range of the highly energetic particles helium-4 and lithium-7 that results from neutron-induced disintegration of boron-10, the efficacy of Boron Neutron Capture Therapy (BNCT) is heavily dependent on 10B-microlocation. Despite the crucial importance of boron-10, there is little specific information with regard to the agent currently used for inducing BNCT, namely Na2B12H11SH. In the present study, a subcellular 10B-location was investigated in tumor tissue obtained from seven patients with glioblastoma World Health Organization Grade IV. These patients received Na2B12H11SH at doses used in therapeutic trials (75 mg/kg body weight in five patients, and 150 mg/kg body weight in two patients, respectively). In three cases, boron-10 was identified in glioblastoma cells by laser microprobe mass analysis. In these tumors, boron-10 was found only in the nuclei of neoplastic cells but not in other cell compartments. These preliminary results suggest a predominant association of Na2B12H11SH with the nuclei of malignant glioma cells and thus support the value of Na2B12H11SH as a suitable boron carrier for BNCT.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3171/jns.1994.81.5.0741 | DOI Listing |
Appl Radiat Isot
January 2025
Institute of Nuclear Engineering and Science, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan; Nuclear Science and Technology Development Center, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan. Electronic address:
In clinical boron neutron capture therapy (BNCT), the distribution of dose to a heterogeneous medium that is predicted by a treatment planning system (TPS) should be experimentally validated. A head phantom specifically developed for this purpose is described and demonstrated herein. The cylindrical phantom exhibits distinct regions made from four materials (polymethyl methacrylate, calcium phosphate, air, and boric acid) to approximate a head structure with explicitly defined skin, skull, and brain tissue with a cavity and tumor within.
View Article and Find Full Text PDFAppl Radiat Isot
January 2025
Department of Otolaryngology Head and Neck Surgery, Osaka Medical and Pharmaceutical University, Takatsuki, Japan; BNCT Joint Clinical Institute, Osaka Medical and Pharmaceutical University, Takatsuki, Japan.
Purpose: Boron neutron capture therapy (BNCT) perform as a treatment option for locally advanced or recurrent unresectable head and neck cancers since June 2020 in Japan. The effect of BNCT on parotid carcinoma, which presents a variety of histologic types, remains unclear. The object of this study was to investigate the antitumor efficacy of BNCT against parotid gland carcinoma by focusing on LAT1, which is involved in the uptake of L-BPA, the boron compound used in BNCT.
View Article and Find Full Text PDFA 77-year-old man was referred to our department because of macrohematuria, oliguria, and a serum creatinine level of 2.47 mg/dL during boron neutron capture therapy (BNCT) for oropharyngeal cancer. At baseline, his creatinine level had been 0.
View Article and Find Full Text PDFSmall
January 2025
MEET, Battery Research Center, University of Muenster, 48149, Muenster, Germany.
Rechargeable lithium-ion batteries (LIBs) are critical for enabling sustainable energy storage. The capacity of cathode materials is a major limiting factor in the LIB performance, and doping has emerged as an effective strategy for enhancing the electrochemical properties of nickel-rich layered oxides such as NCM811. In this study, boron is homogeneously incorporated into the tetrahedral site of NCM811 through co-precipitation, leading to an inductive effect on transition metal (TM)-O-B bonds that delayed structural collapse and reduced oxygen release.
View Article and Find Full Text PDFAppl Radiat Isot
January 2025
Department of Molecular and Genomic Biomedicine, Nagasaki University Graduate School of Biomedical Sciences, 852-8523, Nagasaki, Japan; Central Radioisotope Division, National Cancer Center Research Institute, 104-0045, Tokyo, Japan; Division of BNCT, EPOC, National Cancer Center, Tokyo, Japan; Division of Chemotherapy and Clinical Cancer Research, National Cancer Center Research Institute, 104-0045, Tokyo, Japan. Electronic address:
Boron neutron capture therapy (BNCT) is based on nuclear reactions between thermal neutron and boron-10 preferentially distributed in the cancer cells. B-boronophenylalanine (BPA) is the approved drug for treatment of oral cancers for BNCT. However, the predictive biomarkers to evaluate therapeutic efficacy and side-effects have not been clarified yet.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!