Because of the short range of the highly energetic particles helium-4 and lithium-7 that results from neutron-induced disintegration of boron-10, the efficacy of Boron Neutron Capture Therapy (BNCT) is heavily dependent on 10B-microlocation. Despite the crucial importance of boron-10, there is little specific information with regard to the agent currently used for inducing BNCT, namely Na2B12H11SH. In the present study, a subcellular 10B-location was investigated in tumor tissue obtained from seven patients with glioblastoma World Health Organization Grade IV. These patients received Na2B12H11SH at doses used in therapeutic trials (75 mg/kg body weight in five patients, and 150 mg/kg body weight in two patients, respectively). In three cases, boron-10 was identified in glioblastoma cells by laser microprobe mass analysis. In these tumors, boron-10 was found only in the nuclei of neoplastic cells but not in other cell compartments. These preliminary results suggest a predominant association of Na2B12H11SH with the nuclei of malignant glioma cells and thus support the value of Na2B12H11SH as a suitable boron carrier for BNCT.

Download full-text PDF

Source
http://dx.doi.org/10.3171/jns.1994.81.5.0741DOI Listing

Publication Analysis

Top Keywords

boron neutron
8
neutron capture
8
capture therapy
8
mg/kg body
8
body weight
8
weight patients
8
na2b12h11sh
5
subcellular boron-10
4
boron-10 localization
4
localization glioblastoma
4

Similar Publications

Heterogeneous head phantom for validating treatment planning system in boron neutron capture therapy.

Appl Radiat Isot

January 2025

Institute of Nuclear Engineering and Science, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan; Nuclear Science and Technology Development Center, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan. Electronic address:

In clinical boron neutron capture therapy (BNCT), the distribution of dose to a heterogeneous medium that is predicted by a treatment planning system (TPS) should be experimentally validated. A head phantom specifically developed for this purpose is described and demonstrated herein. The cylindrical phantom exhibits distinct regions made from four materials (polymethyl methacrylate, calcium phosphate, air, and boric acid) to approximate a head structure with explicitly defined skin, skull, and brain tissue with a cavity and tumor within.

View Article and Find Full Text PDF

Purpose: Boron neutron capture therapy (BNCT) perform as a treatment option for locally advanced or recurrent unresectable head and neck cancers since June 2020 in Japan. The effect of BNCT on parotid carcinoma, which presents a variety of histologic types, remains unclear. The object of this study was to investigate the antitumor efficacy of BNCT against parotid gland carcinoma by focusing on LAT1, which is involved in the uptake of L-BPA, the boron compound used in BNCT.

View Article and Find Full Text PDF

A 77-year-old man was referred to our department because of macrohematuria, oliguria, and a serum creatinine level of 2.47 mg/dL during boron neutron capture therapy (BNCT) for oropharyngeal cancer. At baseline, his creatinine level had been 0.

View Article and Find Full Text PDF

Rechargeable lithium-ion batteries (LIBs) are critical for enabling sustainable energy storage. The capacity of cathode materials is a major limiting factor in the LIB performance, and doping has emerged as an effective strategy for enhancing the electrochemical properties of nickel-rich layered oxides such as NCM811. In this study, boron is homogeneously incorporated into the tetrahedral site of NCM811 through co-precipitation, leading to an inductive effect on transition metal (TM)-O-B bonds that delayed structural collapse and reduced oxygen release.

View Article and Find Full Text PDF

Transcriptome analysis of human oral squamous cancer SAS cells as an early response after boron neutron capture therapy.

Appl Radiat Isot

January 2025

Department of Molecular and Genomic Biomedicine, Nagasaki University Graduate School of Biomedical Sciences, 852-8523, Nagasaki, Japan; Central Radioisotope Division, National Cancer Center Research Institute, 104-0045, Tokyo, Japan; Division of BNCT, EPOC, National Cancer Center, Tokyo, Japan; Division of Chemotherapy and Clinical Cancer Research, National Cancer Center Research Institute, 104-0045, Tokyo, Japan. Electronic address:

Boron neutron capture therapy (BNCT) is based on nuclear reactions between thermal neutron and boron-10 preferentially distributed in the cancer cells. B-boronophenylalanine (BPA) is the approved drug for treatment of oral cancers for BNCT. However, the predictive biomarkers to evaluate therapeutic efficacy and side-effects have not been clarified yet.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!