Whole-cell patch-clamp recordings were used to examine the regulation of voltage-dependent calcium channels by mu- and kappa-opioid receptors in acutely isolated rat dorsal root ganglion (DRG) sensory neurons. Agonists selective for either mu- (Tyr-Pro-NMePhe-D-Pro-NH2, PLO17) or kappa-opioid receptors (dynorphin A, U69,593) inhibited high-threshold calcium currents in a reversible and naloxone-sensitive manner, whereas administration of D-Pen2,5-enkephalin, a delta-selective agonist, was without effect. However, none of the opioids reduced low-threshold T-type currents. The inhibitory effects of PLO17 were blocked by the irreversible mu-opioid antagonist beta-funaltrexamine but not the kappa-opioid antagonist nor-binaltorphimine, while responses to kappa-opioid agonists showed the opposite pattern of antagonist sensitivity. In addition, many cells responded to both PLO17 and dynorphin A (or U69,593), and in these neurons the inhibitory response to one agonist was occluded when tested in the presence of the other. These data suggest that mu- and kappa-opioid receptors are coexpressed on at least some DRG neurons and appear to be functionally coupled to a common pool of calcium channels. Both rapidly inactivating (transient) and sustained components of high-threshold current, arising from pharmacologically distinct types of calcium channels, were identified in our neurons. Activation of mu-opioid receptors selectively reduced the transient component of currents evoked at +10 mV from Vh = -80 mV, while sparing the sustained component. The transient component was irreversibly blocked by the N-type channel antagonist omega-conotoxin GVIA (omega-CgTx), and in one-half of the neurons there was a concomitant loss of the response to PLO17. In the remaining neurons, PLO17 continued to reduce a small fraction of omega-CgTx-insensitive current and subsequent administration of the L-type channel blocker nifedipine in saturating concentrations failed to reduce the opioid-induced inhibitory effect. These data demonstrate that mu-opioid receptors are negatively coupled to several pharmacologically distinct types of calcium channels in DRG sensory neurons, one that was blocked by omega-CgTx and thus likely to be N-type, and a second that was resistant to blockade by N- and L-type channel blockers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6577010PMC
http://dx.doi.org/10.1523/JNEUROSCI.14-10-05903.1994DOI Listing

Publication Analysis

Top Keywords

kappa-opioid receptors
16
calcium channels
16
mu- kappa-opioid
12
sensory neurons
12
receptors selectively
8
components high-threshold
8
high-threshold calcium
8
rat dorsal
8
dorsal root
8
root ganglion
8

Similar Publications

Background: The tooth exhibits increased sensitivity to noxious stimuli due to the dense innervation of thin myelinated Aδ fibers and unmyelinated C fibers within the dental pulp. While prior research has identified dynorphin expression in layers I-II of the dorsal horn across the spinal cord in various pain models, its functional role in trigeminal nociception, including tooth pain, remains underexplored. This study examines the potential role of dynorphin in the nociceptive processing of dental stimuli.

View Article and Find Full Text PDF

Kappa opioid receptors (KOR) expressed by peripheral pain-sensing neurons (nociceptors) are a promising target for development of effective and safer analgesics for inflammatory pain that are devoid of central nervous system adverse effects. Here we sought to delineate the signaling pathways that underlie peripheral KOR-mediated antinociception in adult male and female Sprague-Dawley rats. In an inflammatory model of pain, local intraplantar (i.

View Article and Find Full Text PDF

Buprenorphine is an agonist at the mu opioid receptor (MOR) and antagonist at the kappa (KOR) and delta (DOR) receptors and a nociceptin receptor (NOR) ligand. Buprenorphine has a relatively low intrinsic efficacy for G-proteins and a long brain and MOR dwell time. Buprenorphine ceiling on respiratory depression has theoretically been related multiple factors such as low intrinsic efficacy at MOR, binding to six-transmembrane MOR and interactions in MOR/NOR heterodimers.

View Article and Find Full Text PDF

Large library docking of tangible molecules has revealed potent ligands across many targets. While make-on-demand libraries now exceed 75 billion enumerated molecules, their synthetic routes are dominated by a few reaction types, reducing diversity and inevitably leaving many interesting bioactive-like chemotypes unexplored. Here, we investigate the large-scale enumeration and targeted docking of isoquinuclidines.

View Article and Find Full Text PDF

Novel tertiary diarylethylamines as functionally selective agonists of the kappa opioid receptor.

Bioorg Med Chem Lett

January 2025

Contineum Therapeutics, 3565 General Atomics Court, Suite 200, San Diego, CA 92121, United States.

Novel kappa opioid receptor (KOR) agonists that preferentially activate G-protein signaling versus β-arrestin-2 recruitment are described. Starting from a literature-reported phenol-containing diphenethylamine KOR agonist, structure-activity relationship (SAR) studies revealed replacement of the phenol with various non-hydroxylated bicyclic heteroaromatics led to tertiary diarylethylamines which retained KOR agonist activity and improved metabolic stability in human liver microsomes. Further optimizations produced compound 39, a potent activator of G-protein signaling (GTPγS EC = 14 nM, 83 % E) that did not elicit a β-arrestin-2 recruitment functional response (E < 10 %).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!