Ski is a nuclear oncoprotein, and possibly a transcriptional factor, that has been shown to be involved in both transformation and myogenesis. In attempts to understand the molecular mechanisms underlying the function of Ski, the protein-protein interactions of Ski with itself and with its close relative, SnoN, were investigated. It was found that while both v-Ski and c-Ski bound themselves and each other as bacterial fusion proteins, only c-Ski formed homodimers that could be detected by covalent cross-linking of the native in vitro translated protein in solution. The results also showed that c-Ski formed heterodimers with SnoN. Deletion analysis showed that the carboxyl-terminal third of c-Ski, which is deleted in v-Ski, was required for stable dimer formation in solution. This region consists of two predicted structural motifs that constitute the c-Ski dimerization domain. The more amino-terminal motif is predicted to be mostly alpha helical and is comprised of five tandem repeats of 25 amino acids each and was required for c-Ski dimerization. The second motif is a predicted leucine zipper that was not required for dimerization but greatly increased the fraction of Ski protein detected as dimers. This minor c-Ski homodimerization domain appeared to be required for Ski-Sno heterodimer formation.
Download full-text PDF |
Source |
---|
Am J Physiol Cell Physiol
January 2011
Department of Physiology, Institute of Cardiovascular Sciences, University of Manitoba, Winnipeg, Canada.
Cardiac myofibroblasts are key players in chronic remodeling of the cardiac extracellular matrix, which is mediated in part by elevated transforming growth factor-β₁ (TGF-β₁). The c-Ski proto-oncoprotein has been shown to modify TGF-β₁ post-receptor signaling through receptor-activated Smads (R-Smads); however, little is known about how c-Ski regulates fibroblast phenotype and function. We sought to elucidate the function of c-Ski in primary cardiac myofibroblasts using a c-Ski overexpression system.
View Article and Find Full Text PDFJ Biol Chem
July 2007
Department of Molecular Pathology, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.
Transforming growth factor-beta (TGF-beta) signaling is controlled by a variety of regulators that target either signaling receptors or activated Smad complexes. Among the negative regulators, Smad7 antagonizes TGF-beta signaling mainly through targeting the signaling receptors, whereas SnoN and c-Ski repress signaling at the transcriptional level through inactivation of Smad complexes. We previously found that Arkadia is a positive regulator of TGF-beta signaling that induces ubiquitin-dependent degradation of Smad7 through its C-terminal RING domain.
View Article and Find Full Text PDFObjective: The principal effect of transforming growth factor beta1 (TGFbeta1) on mesenchymal cells is its stimulation of extracellular matrix synthesis. Previous reports indicated the significance of the autocrine TGFbeta loop in the pathogenesis of scleroderma. The aim of this study was to examine c-Ski and SnoN, principal molecules in the negative regulation of TGFbeta signaling, to further understand the autocrine TGFbeta loop in scleroderma.
View Article and Find Full Text PDFCell Signal
February 2003
University of Louisville Birth Defects Center, Department of Molecular, Cellular, and Craniofacial Biology, University of Louisville School of Dentistry, 501 South Preston Street, Suite 301, Louisville, KY 40292, USA.
Transforming growth factors beta (TGFbeta) and cyclic AMP (cAMP) both participate in growth and differentiation of the developing mammalian secondary palate and elicit similar biological responses. Cross-talk between these two signal transduction pathways in cells derived from the embryonic palate has been demonstrated previously. In the present study, we have examined nuclear convergence of these signalling pathways at the level of transcriptional complex formation.
View Article and Find Full Text PDFGenes Dev
February 1999
Laboratory of Molecular Genetics, Tsukuba Life Science Center, RIKEN, Tsukuba, Ibaraki 305-0074, Japan.
The N-CoR/SMRT complex containing mSin3 and histone deacetylase (HDAC) mediates transcriptional repression by nuclear hormone receptors and Mad. The proteins encoded by the ski proto-oncogene family directly bind to N-CoR/SMRT and mSin3A, and forms a complex with HDAC. c-Ski and its related gene product Sno are required for transcriptional repression by Mad and thyroid hormone receptor (TRbeta).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!