Latency of matrix metalloproteinase 3 (MMP-3) is regulated by the interaction of a free cysteine residue (Cys-75) in the conserved amino acid sequence Pro-Arg-Cys-Gly-Val-Pro-Asp located in the COOH-terminal portion of the propeptide with a chelated zinc atom in the active site of the catalytic domain. Proteolytic activation of full-length human pro-MMP-3 involves the removal of approximately 35 amino acids from the NH2-terminal portion of the propeptide, forming a 53-kDa unstable intermediate that undergoes intermolecular autocatalysis to form the 45-kDa mature active enzyme. In this study, we have evaluated the contribution of the NH2-terminal 35 amino acids to the maintenance of latency. Full-length human pro-MMP-3 was expressed in Escherichia coli and refolded to form latent pro-MMP-3 capable of activation by chymotrypsin or aminophenylmercuric acetate. Renaturation of pro-MMP-3 expressed in bacteria with 20 or more amino acids removed from the NH2-terminal region of the propeptide yielded only an active enzyme. COS-7 cells transiently transfected with pro-MMP-3 expression vectors containing the single amino acid substitutions Y20A, L21A, and C75S also secreted active forms of the enzyme. These data suggest that simultaneous interactions of the NH2- and COOH-terminal regions of the propeptide are required for maintenance of the latent form of the enzyme.
Download full-text PDF |
Source |
---|
Drug Des Devel Ther
January 2025
Department of Hematology, Jining NO. 1 People's Hospital, Jining, 272000, People's Republic of China.
Purpose: Mitoxantrone (MTX) is largely restricted in clinical usage due to its significant cardiotoxicity. Multiple studies have shown that an imbalance in the gut-heart axis plays an important role in the development of cardiovascular disease (CVD). We aim to explore the possible correlations between gut microbiota (GM) compositions and cardiometabolic (CM) disorder in MTX-triggered cardiotoxicity mice.
View Article and Find Full Text PDFDrug Des Devel Ther
January 2025
Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, 272000, People's Republic of China.
Background: Corilagin is widely distributed in various medicinal plants. In recent years, numerous pharmacological activities of Corilagin have been reported, including anti-inflammatory, antiviral, hepatoprotective, anti-tumor, and anti-fibrosis effects. However, there is still a need for systematic metabolomics analysis to further elucidate its mechanisms of action.
View Article and Find Full Text PDFPNAS Nexus
January 2025
Logic of Genomic Systems Laboratory (CNB-CSIC), Madrid E-28049, Spain.
While more data are becoming available on gene activity at different levels of biological organization, our understanding of the underlying biology remains incomplete. Here, we introduce a metabolic efficiency framework that considers highly expressed proteins (HEPs), their length, and biosynthetic costs in terms of the amino acids (AAs) they contain to address the observed balance of expression costs in cells, tissues, and cancer transformation. Notably, the combined set of HEPs in either cells or tissues shows an abundance of large and costly proteins, yet tissues compensate this with short HEPs comprised of economical AAs, indicating a stronger tendency toward mitigating costs.
View Article and Find Full Text PDFACS Phys Chem Au
January 2025
Instituto de Ciência e Tecnologia, Universidade Federal de São Paulo, São José dos Campos, 12247-014 São Paulo, Brazil.
The unique properties and versatile applications of natural deep eutectic solvents (NaDES) have sparked significant interest in the field of green chemistry. Comprised of natural components that form liquids at room temperature through strong noncovalent electrostatic interaction, these solvents are cost-effective, nontoxic, and versatile. Betaine chloride-based NaDES, in particular, have shown promise in biocatalysis and sugar extraction due to their excellent properties.
View Article and Find Full Text PDFInt J Pept Res Ther
January 2025
Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States 46202.
Purpose: Heterozygous mutations in the insulin gene can give rise to a monogenic diabetes syndrome due to toxic misfolding of the variant proinsulin in the endoplasmic reticulum (ER) of pancreatic β-cells. Clinical mutations are widely distributed in the sequence (86 amino acids). Misfolding induces chronic ER stress and interferes in with wildtype biosynthesis and secretion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!