AI Article Synopsis

Article Abstract

It is assumed that plasmin participates in pericellular proteolysis in the epidermis. Plasmin is generated by keratinocyte-associated plasminogen activators from the proenzyme plasminogen; plasminogen activation can proceed at the keratinocyte surface. The resultant plasmin interferes with cell to matrix adhesion and does possibly contribute to keratinocyte migration during reepithelialization. Here we describe the receptor for urokinase-type plasminogen activator (uPA-R) in the human keratinocyte cell line HaCaT, which serves to direct plasminogen activation to the cell surface; we relate the receptor to the uPA-R previously described in human myelo-/monocytes. Binding of uPA to the receptor accelerated plasminogen activation by a factor of approximately 10, compared to uPA in solution. Receptor-bound uPA was susceptible to inhibition by the plasminogen activator inhibitors 1 and 2. uPA and uPA-R antigen, as well as uPA activity, were localized to the leading front of expanding sheets of HaCaT cells. Exposure of HaCaT cells to plasminogen was followed by detachment of the cells. Detachment was prevented by an anticatalytic anti-uPA antibody, by the plasmin-specific inhibitor aprotinin, and by the lysine analogue tranexamic acid, the latter of which prevents plasmin(ogen) binding to the cell surface. Our findings support the hypothesis that uPA-mediated plasminogen activation is characteristic of mobile rather than sessile keratinocytes. Moreover, the uPA-R seems to focalize plasminogen activation to the surface of cells at the site of keratinocyte migration.

Download full-text PDF

Source
http://dx.doi.org/10.1006/excr.1994.1286DOI Listing

Publication Analysis

Top Keywords

plasminogen activation
20
plasminogen
12
plasminogen activator
12
receptor urokinase-type
8
urokinase-type plasminogen
8
human keratinocyte
8
keratinocyte migration
8
cell surface
8
hacat cells
8
keratinocyte
5

Similar Publications

Introduction: Coagulopathy following traumatic injury impairs stable blood clot formation and exacerbates mortality from hemorrhage. Understanding how these alterations impact blood clot stability is critical to improving resuscitation. Furthermore, the incorporation of machine learning algorithms to assess clinical markers, coagulation assays and biochemical assays allows us to define the contributions of these factors to mortality.

View Article and Find Full Text PDF

Background: The definition of minor ischemic stroke (MIS) is a topic of debate, however, the most accepted definition is a stroke with National Institutes of Health Stroke Scale (NIHSS) ≤ 5. Intravenous thrombolysis (IVT) is a crucial treatment option for acute ischemic stroke (AIS) including: alteplase, recombinant human tissue-type plasminogen activator (r-tPA), and the recently approved tenecteplase. However, there is a debate regarding its safety and efficacy.

View Article and Find Full Text PDF

Plasminogen activator inhibitor-1 (PAI-1) is central to fibrinolysis regulation, and genetic variants such as the 4G/4G genotype predispose individuals to hypercoagulability. This case highlights a 46-year-old female patient presenting with acute mesenteric venous thrombosis, where genetic evaluation revealed homozygosity for the PAI-1 4G/4G polymorphism. Management with unfractionated heparin followed by a transition to direct oral anticoagulants led to clinical resolution.

View Article and Find Full Text PDF

Trauma-induced coagulopathy (TIC) is characterized by dynamic changes in fibrinolysis, which can significantly impact patient outcomes. These changes typically manifest in two phases: hyperfibrinolysis followed by fibrinolysis suppression. In the early stages of TIC, there is often an overwhelming release of tissue plasminogen activator, which leads to excessive fibrinolysis.

View Article and Find Full Text PDF

A cross-sectional study on the correlation between internal cerebral vein asymmetry and hemorrhagic transformation following endovascular thrombectomy.

Front Neurol

January 2025

Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China.

Introduction: Hemorrhagic transformation (HT) is a severe complication in patients with acute ischemic stroke due to large vessel occlusion (AIS-LVO) after endovascular treatment (EVT). We hypothesize that asymmetry of the internal cerebral veins (ICVs) on baseline CT angiogram (CTA) may serve as an adjunctive predictor of HT.

Methods: We conducted a study on consecutive AIS-LVO patients from November 2020 to April 2022.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!