Thallium-avid cerebral radiation necrosis.

Clin Nucl Med

Department of Diagnostic Radiology, University of Kentucky Medical Center, Lexington 40536.

Published: July 1994

Thallium imaging has been proposed as a noninvasive method to distinguish recurrent tumor from cerebral radiation necrosis in patients who have undergone radiation therapy. Previous reports have supported the intuitive hypothesis that metabolically active tumor tissue would accumulate Tl-201 to a much higher degree than nonviable necrotic tissue. A case of biopsy-proven cerebral radiation necrosis is presented demonstrating a degree of Tl-201 avidity previously thought to be diagnostic of recurrent tumor. Based on this finding, it is concluded that a high degree of Tl-201 uptake does not exclude the diagnosis of cerebral radiation necrosis.

Download full-text PDF

Source
http://dx.doi.org/10.1097/00003072-199407000-00011DOI Listing

Publication Analysis

Top Keywords

cerebral radiation
16
radiation necrosis
16
recurrent tumor
8
degree tl-201
8
radiation
5
thallium-avid cerebral
4
necrosis
4
necrosis thallium
4
thallium imaging
4
imaging proposed
4

Similar Publications

Interplay of Light, Melatonin, and Circadian Genes in Skin Pigmentation Regulation.

Pigment Cell Melanoma Res

January 2025

Department of Cell Biology and Anatomy, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.

Circadian regulation of skin pigmentation is essential for thermoregulation, ultraviolet (UV) protection, and synchronization of skin cell renewal. This regulation involves both cell-autonomous photic responses and non-cell-autonomous hormonal control, particularly through melatonin produced in a light-sensitive manner. Photosensitive opsins, cryptochromes, and melatonin regulate circadian rhythms in skin pigment cells.

View Article and Find Full Text PDF

Purpose: This study aimed to identify prognostic factors and develop a nomogram for survival in patients with brainstem ependymoma.

Methods: Data of 652 patients diagnosed with brainstem ependymoma extracted from the Surveillance, Epidemiology, and End Results (SEER) registry from 2000 to 2020 were analyzed. Univariate and multivariable Cox regression analyses were performed to examine factors influencing overall survival (OS).

View Article and Find Full Text PDF

Decreased opioid receptor availability and impaired neurometabolic coupling as signatures of morphine tolerance in male rats: A positron emission tomography study.

Biomed Pharmacother

January 2025

Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, Université Paris-Saclay, Orsay, France. Electronic address:

Translational neuroimaging techniques are needed to address the impact of opioid tolerance on brain function and quantitatively monitor the impaired neuropharmacological response to opioids at the CNS level. A multiparametric PET study was conducted in rats. Rats received morphine daily to induce tolerance (15 mg/kg/day for 5 days), followed by 2-day withdrawal.

View Article and Find Full Text PDF

Oral iron sulfide prevents acute alcohol intoxication by initiating the endogenous multienzymatic antioxidant defense system.

Sci Adv

January 2025

State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China.

Acute alcohol intoxication could cause multiorgan damage, including nervous, digestive, and cardiovascular systems, and in particular, irreversible damage to the brain and liver. Emerging studies have revealed that the endogenous multienzymatic antioxidant defense system (MEAODS) plays a central role in preventing oxidative stress and other toxicological compounds produced by alcohol. However, few available drugs could quickly regulate MEAODS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!