Background: Several epidemiological studies have shown an inverse relation between high-density lipoprotein (HDL) cholesterol levels and coronary heart disease. Recently, observational studies have suggested a similar inverse relation between HDL and restenosis after coronary balloon angioplasty. Despite these observations, it is unclear whether this inverse relation reflects a direct vascular protective effect of HDL or apolipoprotein (apo) A-I, the major apolipoprotein component of HDL. Therefore, to determine whether HDL directly influences neointima formation, we investigated the effect of recombinant apo A-I Milano (apo A-I M), a mutant of human apo A-I with Arg-173 to Cys substitution, on intimal thickening after balloon injury in cholesterol-fed rabbits.
Methods And Results: Cholesterol feeding was initiated 18 days before injury and continued until the time of death. Eight rabbits received intravenous injections of 40 mg of apo A-I M linked to a phospholipid carrier on alternate days, beginning 5 days before and continuing for 5 days after balloon injury of femoral and iliac arteries. Eight rabbits received the carrier alone, and four received neither apo A-I M nor the carrier. Three weeks after balloon injury, apo A-I M-treated rabbits had significantly reduced intimal thickness compared with the two control groups (mean +/- SD): 0.49 +/- 0.29 versus 1.14 +/- 0.38 mm2 and 1.69 +/- 0.43 mm2, P < .002 by ANOVA). The intima-to-media ratio was also significantly reduced by apo A-I M (0.7 +/- 0.2 versus 1.5 +/- 0.5 and 2.1 +/- 0.1, P < .002 by ANOVA) compared with the two controls. The fraction of intimal lesion covered by macrophages, as identified by immunohistochemistry using macrophage-specific monoclonal antibody, was significantly less in apo A-I M-treated rabbits compared with carrier-treated animals (25.3 +/- 17% versus 59.4 +/- 12.3%, P < .005). Aortic cholesterol content, measured in an additional 10 rabbits, did not differ significantly between apo A-I M-treated animals (n = 5) and carrier-treated controls (n = 5).
Conclusions: Apo A-I M significantly reduced intimal thickening and macrophage content after balloon injury in cholesterol-fed rabbits without a change in arterial total cholesterol content. Although the precise mechanism of action remains to be defined, these findings are consistent with a direct vascular effect of apo A-I, which could have potential therapeutic implications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1161/01.cir.90.4.1935 | DOI Listing |
Alzheimers Dement
December 2024
The Fourth People's Hospital of Chengdu, Chengdu, Sichuan, China.
Background: Apolipoproteins and cortical morphology are closely associated with memory complaints, and both may contribute to the development of Alzheimer's disease.
Method: A total of 97 patients from the University of Electronic Science and Technology (UESTC) (n=42) and the Fourth People's Hospital of Chengdu (FPHC) (n=55) were grouped based on recruitment location, and underwent neuropsychological tests. ApoB, ApoA1, ApoB/ApoA1, plasma Alzheimer's biomarker, apolipoprotein E (ApoE) genotyping, 3T magnetic resonance imaging.
JCI Insight
January 2025
Department of Foundations of Medicine, NYU Grossman Long Island School of Medicine, Mineola, New York, USA.
High apolipoprotein B-containing (apoB-containing) low-density lipoproteins (LDLs) and low apoA1-containing high-density lipoproteins (HDLs) are associated with atherosclerotic cardiovascular diseases. In search of a molecular regulator that could simultaneously and reciprocally control both LDL and HDL levels, we screened a microRNA (miR) library using human hepatoma Huh-7 cells. We identified miR-541-3p that both significantly decreases apoB and increases apoA1 expression by inducing mRNA degradation of 2 different transcription factors, Znf101 and Casz1.
View Article and Find Full Text PDFRMD Open
January 2025
Department of Rheumatology, UZ Leuven, Leuven, Belgium.
Objectives: To investigate serum lipid profile in early, treatment-naïve psoriatic arthritis (PsA) and to determine whether changes in classical lipids or apolipoproteins are specific to PsA.
Methods: Total cholesterol, non-high-density lipoprotein cholesterol (non-HDL-c), low-density lipoprotein cholesterol (LDL-c), HDL-c, triglycerides, apolipoprotein B (ApoB) and apolipoprotein A1 (ApoA1) were compared in newly diagnosed untreated PsA patients (n=75) to sex- and age-matched controls (healthy control (HC)) (n=61) and early untreated rheumatoid arthritis (RA) patients (n=50).
Results: Among classical lipid measurements, HDL-c levels were lower in PsA than in HC and RA (df 2, χ10, p=0.
Cells
December 2024
College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China.
Many efforts have been made to reveal the mechanisms underlying skeletal muscle development because of its importance in animals. However, knowledge on chromatin accessibility, a prerequisite for gene expression, remains limited. Here, dynamic changes in chromatin accessibility were analyzed in the skeletal muscles of Min pigs at the ages of 30, 90, and 210 d using an assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq).
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
January 2025
National Metabolic Management Center, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian, China.
Background: The triglycerides to Apolipoprotein A1 ratio (TG/APOA1) holds promise to be a more valuable index of insulin resistance for the diagnosis of metabolic dysfunction-associated fatty liver disease (MAFLD) in type 2 diabetes mellitus (T2DM). This study aims to evaluate the correlation between TG/APOA1 and MAFLD, as well as compare the efficacy of TG/APOA1 with triglycerides to high-density lipoprotein cholesterol ratio (TG/HDL-c) and triglyceride-glucose (TyG) index in identifying MAFLD among individuals with T2DM.
Method: This study consecutively recruited 779 individuals with T2DM for the investigation.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!