Selective elution of Sendai virus integral membrane proteins by ion-exchange high-performance liquid chromatography (HPIEC) using different detergent concentrations was reported before [S. Welling-Wester, M. Freijlbrief, D.G.A.M. Koedijk, M.A. Braaksma, B.R.K. Douma and G.W. Welling, J. Chromatogr., 646 (1993) 37]. In the present study this novel approach was applied to the purification of the integral membrane glycoprotein D of Herpes simplex virus type 1 and 2. The glycoproteins D of types 1 (gD-1) and 2 (gD-2) were cloned into the baculovirus expression system and produced in protein-free cultured insect cells. Detergent extracts of recombinant baculovirus-infected insect cells containing gD-1 or gD-2 were prepared using pentaethyleneglycol monodecyl ether, for extraction (final concentration 2%, w/v). The same detergent was used as additive in the elution buffers for HPIEC on a Mono Q HR 5/5 column. At low (0.005%) detergent concentration, most of the proteins present in the extract including part of gD were eluted with the sodium chloride gradient whereas a subsequent blank run using the same gradient at higher detergent concentration (0.1%) resulted in selective elution of pure gD.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0021-9673(94)80454-0DOI Listing

Publication Analysis

Top Keywords

integral membrane
12
purification integral
8
herpes simplex
8
simplex virus
8
baculovirus expression
8
expression system
8
ion-exchange high-performance
8
high-performance liquid
8
liquid chromatography
8
selective elution
8

Similar Publications

The precise engineering of microporosity is challenging due to the interference at sub-nm scale from unexpected structural flexibility and molecular packing. Herein, the concept of topological supramolecular complexation is proposed for the feasible fabrication of hierarchical microporosity with broad tunability in amorphous form. The 2.

View Article and Find Full Text PDF

CIDEC/FSP27 exacerbates obesity-related abdominal aortic aneurysm by promoting perivascular adipose tissue inflammation.

Life Metab

February 2025

Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200438, China.

Abdominal aortic aneurysm (AAA) is strongly correlated with obesity, partially due to the abnormal expansion of abdominal perivascular adipose tissue (PVAT). Cell death-inducing DNA fragmentation factor-like effector C (CIDEC), also known as fat-specific protein 27 (FSP27) in rodents, is specifically expressed in adipose tissue where it mediates lipid droplet fusion and adipose tissue expansion. Whether and how CIDEC/FSP27 plays a role in AAA pathology remains elusive.

View Article and Find Full Text PDF

Background: Cholestasis plays a critical role in sepsis-associated liver injury (SALI). Intestine-derived fibroblast growth factor 19 (FGF19) is a key regulator for bile acid homeostasis. However, the roles and underlying mechanisms of FGF19 in SALI are still unclear.

View Article and Find Full Text PDF

Purpose: Human amniotic membrane (hAM) grafts have been used to close persistent macular holes in recent years. The results from these surgeries are promising with improved closure rate and vision. However, there is lack of data for what happens to these membranes and how long the tissue should remain inside the patient's eyes.

View Article and Find Full Text PDF

The global scarcity of irrigation-grade water poses severe concerns in the agricultural sector. Desalination techniques including reverse osmosis, electrodialysis, capacitive deionization, membrane filtration, and multi-stage flash are some dynamic solutions to mitigate this challenge. In this study, novel bio-filter materials were explored and developed for the application of membrane-based electrodialysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!