Patients with acute promyelocytic leukemia (APL) associated with the t(15;17) translocation and fusion of the promyelocytic leukemia (PML) and retinoic acid receptor-alpha (RAR-alpha) genes achieve complete remission but not cure with all-trans retinoic acid (RA), NB4, a cell line derived from a patient with t(15;17) APL that undergoes granulocytic differentiation when treated with pharmacologic doses of RA, was used as a model for differentiation therapy of APL. We found that NB4 cells are resistant to differentiation by nonretinoid inducers such as hexamethylene bisacetamide (HMBA), butyrates, vitamin D3, or hypoxanthine, all of which can induce differentiation in the commonly used HL60 leukemia cell line. Preexposure of NB4 cells to low concentrations of RA for a period as short as 30 minutes abolished resistance to nonretinoids and potentiated differentiation. Sequential RA and HMBA treatment yielded maximal differentiation by 3 days of drug exposure, whereas the effect of RA alone peaked after 6 days and yielded a smaller percentage of differentiated cells. RA also reversed NB4 cell resistance to butyrates and allowed for synergistic differentiation by these agents. Pretreatment with HMBA before exposure to RA failed to stimulate differentiation. Sequential RA/HMBA treatment also markedly increased the extent of differentiation of primary cultures of bone marrow and peripheral blood mononuclear cells from three APL patients. In one case RA/HMBA treatment overcame resistance to RA in vitro. Together, these results suggest that intermittent low doses of RA followed by either HMBA or butyrates may be a useful combination in the treatment of APL. This clinical strategy may help prevent or overcome RA resistance in APL.

Download full-text PDF

Source

Publication Analysis

Top Keywords

retinoic acid
12
promyelocytic leukemia
12
differentiation
10
acute promyelocytic
8
nb4 cell
8
nb4 cells
8
hmba butyrates
8
differentiation sequential
8
ra/hmba treatment
8
apl
6

Similar Publications

Nuclear receptors (NRs) are ligand-activated transcription factors that regulate gene expression in response to physiological signals, such as hormones and other chemical messengers. These receptors either activate or repress the transcription of target genes, which in turn promotes or suppresses physiological processes governing growth, differentiation, and homeostasis. NRs bind to specific DNA sequences and, in response to ligand binding, either promote or hinder the assembly of the transcriptional machinery, thereby influencing gene expression at the transcriptional level.

View Article and Find Full Text PDF

The 3D printing of human tissue constructs requires carefully designed bioinks to support the growth and function of cells. Here it is shown that an additional parameter is how drug-releasing microparticles affect the material properties of the scaffold. A microfluidic platform is used to create all-trans retinoic acid (atRA) polycaprolactone (PCL) microparticles with a high encapsulation efficiency (85.

View Article and Find Full Text PDF

Acute promyelocytic leukemia (APL) is driven by the specific fusion gene PML-RARA produced by chromosomal translocation. Three classic isoforms, L, V, and S, are found in more than 95% of APL patients. However, atypical PML-RARA isoforms are usually associated with uncertain disease progression and treatment prognosis.

View Article and Find Full Text PDF

Introduction: Palovarotene is a retinoic acid receptor gamma agonist that was studied in phase-2 and phase-3 clinical trials for the inhibition of new heterotopic ossification (HO) in fibrodysplasia ossificans progressiva (FOP). Despite numerous setbacks and regulatory delays, palovarotene is now the first approved FOP treatment in the U.S.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!