Recombinant BM 06.022 (M(r) 39,589) is a domain-deletion mutant of the human tissue-type plasminogen activator (tPA) structured by the kringle 2 and protease modules. Unfolding under various conditions was investigated via 1H-NMR spectroscopy by monitoring the well-resolved high-field methyl resonances at approximately -0.97 ppm (kringle 2) and approximately -0.29 and -0.54 ppm (protease). Reversible acid/base unfolding is manifest under low pH (< 4.8) conditions. It is observed that, relative to the protease, the kringle exhibits higher overall stability at low pH. At pH 4.6, BM 06.022 undergoes two distinct thermal melting transitions, at approximately 334 and approximately 352 K, assigned to an irreversible denaturation of the protease and a reversible unfolding of the kringle 2, respectively. Under the same conditions, the protease reacted with the active site inhibitor 1,5 dansyl-L-glutamylglycyl-L-arginine chloromethyl ketone (EGRck) exhibits a higher (approximately 10 K) thermal stability than the inhibitor-free protease. Upon acidification, the EGRck-modified protease unfolds irreversibly around pH 3.4. As exemplified by BM 06.022, a single-chain protein, as defined by continuity of the polypeptide backbone, can exhibit simultaneous folding reversibility and irreversibility for autonomous segments of the sequence. Conversion of the isolated (single-chain) protease or intact BM 06.022 to their catalytically active two-chain forms via plasminolytic cleavage of the Arg275-Ile276 peptide bond leaves the kringle 2 spectrum unaffected while perturbing the resolved high-field methyl resonances stemming from the protease. The latter also shift when the protease is reacted with EGRck, indicating that these signals are sensitive to events at the binding pocket.(ABSTRACT TRUNCATED AT 250 WORDS)

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi00205a011DOI Listing

Publication Analysis

Top Keywords

protease
10
tissue-type plasminogen
8
plasminogen activator
8
domain-deletion mutant
8
high-field methyl
8
methyl resonances
8
protease reversible
8
exhibits higher
8
protease reacted
8
06022
5

Similar Publications

Protein Phosphatase 2A B'α and B'β promote pollen wall construction partially through BZR1-activated CEP1 in Arabidopsis.

J Exp Bot

January 2025

Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology; Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation; Hebei Key Laboratory of Molecular and Cellular Biology; College of Life Sciences, Hebei Normal University, 050024 Shijiazhuang, China.

A well-constructed pollen wall is essential for pollen fertility, which relies on the contribution of tapetum. Our results demonstrate an essential role of the tapetum-expressed protein phosphatase 2A (PP2A) B'α and B'β in pollen wall formation. The b'aβ double mutant pollen grains harbored sticky remnants and tectum breakages, resulting in failed release.

View Article and Find Full Text PDF

Lung cancer is one of the major causes of cancer morbidity and mortality. Subtyping of non-small cell lung cancer is necessary owing to different treatment options. This study is to evaluate the value of immunohistochemical expression of glypican-1 in the diagnosis of lung squamous cell carcinoma (SCC).

View Article and Find Full Text PDF

Background: Biological control methods involving entomopathogenic fungi like Beauveria bassiana have been shown to be a valuable approach in integrated pest management as an environmentally friendly alternative to control pests and pathogens. Identifying genetic determinants of pathogenicity in B. bassiana is instrumental for enhancing its virulence against insects like the resistant soybean pest Piezodorus guildinii.

View Article and Find Full Text PDF

The pleiotropic effects of PCSK9 in cardiovascular diseases beyond cholesterol metabolism.

Acta Physiol (Oxf)

February 2025

Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China.

Cardiovascular diseases (CVD) are the leading cause of morbidity and mortality globally, with elevated low-density lipoprotein cholesterol (LDL-C) levels being a major risk factor. Proprotein convertase subtilisin/kexin type 9 (PCSK9) plays a critical role in regulating LDL-C levels by promoting the degradation of hepatic low-density lipoprotein receptors (LDLR) responsible for clearing LDL-C from the circulation. PCSK9 inhibitors are novel lipid-modifying agents that have demonstrated remarkable efficacy in reducing plasma LDL-C levels and decreasing the incidence of CVD.

View Article and Find Full Text PDF

The Novel Effect and Potential Mechanism of Lactoferrin on Organ Fibrosis Prevention.

Nutrients

January 2025

Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, China-Canada Joint Lab of Food Nutrition and Health, Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing Technology and Business University, Beijing 100048, China.

Organ fibrosis is gradually becoming a human health and safety problem, and various organs of the body are likely to develop fibrosis. The ultimate pathological feature of numerous chronic diseases is fibrosis, and few interventions are currently available to specifically target the pathogenesis of fibrosis. The medical detection of organ fibrosis has gradually matured.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!