In recent years it has become clear that a cell cannot be visualized as a 'bag' filled with enzymes dissolved in bulk water. The aqueous-phase properties in the interior of a cell are, indeed, essentially different from those of an ordinary aqueous solution. Large amounts of water are believed to be organized in layers at the surface of intracellular structural proteins and membranes. Such considerations prompt us to reconsider the operation and regulation of metabolic pathways. Enzymes of metabolic pathways are nowadays thought to be clustered and operate as 'metabolons'. Very often interactions between enzymes of a pathway can exclusively be evidenced in vitro in media which are known to reduce the water concentration in the vicinity of the proteins. Immobilized enzyme preparations have been shown to be excellent tools for this type of research. We describe here some recent studies where immobilized enzymes have been used in various applications to investigate associations among enzymes of a number of different metabolic pathways (glycolysis/gluconeogenesis, citric acid cycle and its connection to the electron transport chain, aspartate-malate shuttle, glyoxylate cycle). Advantages and disadvantages of the different techniques are also discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jmr.300060408 | DOI Listing |
Microbiome
January 2025
Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK.
Background: Maintaining gut health is a persistent and unresolved challenge in the poultry industry. Given the critical role of gut health in chicken performance and welfare, there is a pressing need to identify effective gut health intervention (GHI) strategies to ensure optimal outcomes in poultry farming. In this study, across three broiler production cycles, we compared the metagenomes and performance of broilers provided with ionophores (as the control group) against birds subjected to five different GHI combinations involving vaccination, probiotics, prebiotics, essential oils, and reduction of ionophore use.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, 641003, Tamil Nadu, India.
Magnesium (Mg) an essential plant nutrient is widespread deficient in the acidic soils of Nilgiris of Tamil nadu, India. The vegetable yield and quality is especially affected due to deficiency of nutrients like Mg. This study investigates soil characteristics and bacterial diversity in the Nilgiris district of Tamil Nadu, India, with respect to Mg deficiency.
View Article and Find Full Text PDFJ Mol Histol
January 2025
Department of Thoracic Surgery, Lung Cancer Diagnosis and Treatment Center of Dalian, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
Malignant tumors are among the major diseases threatening human survival in the world, and advancements in medical technology have led to a steady increase in their detection rates worldwide. Despite unique clinical presentations across the spectrum of malignancies, treatment modalities generally adhere to common strategies, encompassing primarily surgical intervention, radiation therapy, chemotherapy, and targeted treatments. Uncovering the genetic elements contributing to cancer cell proliferation, metastasis, and drug resistance remains a pivotal pursuit in the development of novel targeted therapeutics.
View Article and Find Full Text PDFSci Rep
January 2025
Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
Hepatocellular carcinoma (HCC) is the most prevalent form of primary liver cancer, notoriously refractory to conventional chemotherapy. Historically, sulfane sulfur-based compounds have been explored for the treatment of HCC, but their efficacy has been underwhelming. We recently reported a novel sulfane sulfur donor, PSCP, which exhibited improved chemical stability and structural malleability.
View Article and Find Full Text PDFCommun Biol
January 2025
Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA.
In mammalian oocytes, large-scale chromatin organization regulates transcription, nuclear architecture, and maintenance of chromosome stability in preparation for meiosis onset. Pre-ovulatory oocytes with distinct chromatin configurations exhibit profound differences in metabolic and transcriptional profiles that ultimately determine meiotic competence and developmental potential. Here, we developed a deep learning pipeline for the non-invasive prediction of chromatin structure and developmental potential in live mouse oocytes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!