The morphology of leukemic lymphoblasts, as seen in the initial routine bone marrow aspirate, of 40 children with ALL has been evaluated using a computer-assisted automated microscope. A statistic, derived from a combination of the number of macrolymphoblasts and the percentage of cells with no cytoplasm was found to predict response to standard therapy and to identify patients with a high probability of long-term remission as well as a group with a relatively poor response to therapy.
Download full-text PDF |
Source |
---|
PLoS One
January 2025
Division of Biological Sciences, US Fish and Wildlife Southwest Regional Office, Albuquerque, New Mexico, United States of America.
There is growing interest in using deep learning models to automate wildlife detection in aerial imaging surveys to increase efficiency, but human-generated annotations remain necessary for model training. However, even skilled observers may diverge in interpreting aerial imagery of complex environments, which may result in downstream instability of models. In this study, we present a framework for assessing annotation reliability by calculating agreement metrics for individual observers against an aggregated set of annotations generated by clustering multiple observers' observations and selecting the mode classification.
View Article and Find Full Text PDFSci Rep
January 2025
Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Grapevine Breeding Geilweilerhof, 76833, Siebeldingen, Germany.
The hairiness of the leaves is an essential morphological feature within the genus Vitis that can serve as a physical barrier. A high leaf hair density present on the abaxial surface of the grapevine leaves influences their wettability by repelling forces, thus preventing pathogen attack such as downy mildew and anthracnose. Moreover, leaf hairs as a favorable habitat may considerably affect the abundance of biological control agents.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Orthopaedic Surgery and Traumatology, Bern University Hospital, Inselspital, University of Bern, Bern, Switzerland.
Scapular morphological attributes show promise as prognostic indicators of retear following rotator cuff repair. Current evaluation techniques using single-slice magnetic-resonance imaging (MRI) are, however, prone to error, while more accurate computed tomography (CT)-based three-dimensional techniques, are limited by cost and radiation exposure. In this study we propose deep learning-based methods that enable automatic scapular morphological analysis from diagnostic MRI despite the anisotropic resolution and reduced field of view, compared to CT.
View Article and Find Full Text PDFSci Rep
January 2025
Divisions of Physical Therapy and Rehabilitation Science, Department of Family Medicine and Community Health, University of Minnesota, Minneapolis, MN, 55455, USA.
OrthoFusion, an intuitive super-resolution algorithm, is presented in this study to enhance the spatial resolution of clinical CT volumes. The efficacy of OrthoFusion is evaluated, relative to high-resolution CT volumes (ground truth), by assessing image volume and derived bone morphological similarity, as well as its performance in specific applications in 2D-3D registration tasks. Results demonstrate that OrthoFusion significantly reduced segmentation time, while improving structural similarity of bone images and relative accuracy of derived bone model geometries.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Computational Health, Institute of Computational Biology, Helmholtz Zentrum München, Munich, Germany.
Advancements in high-throughput screenings enable the exploration of rich phenotypic readouts through high-content microscopy, expediting the development of phenotype-based drug discovery. However, analyzing large and complex high-content imaging screenings remains challenging due to incomplete sampling of perturbations and the presence of technical variations between experiments. To tackle these shortcomings, we present IMage Perturbation Autoencoder (IMPA), a generative style-transfer model predicting morphological changes of perturbations across genetic and chemical interventions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!