1. Previous studies have suggested that a series of drugs modelled on part of the strychnine molecule interfere with the development of high pressure neurological syndrome (HPNS) and it was presumed that this effect was via an action on inhibitory glycinergic transmission. We have now used the rat hippocampal slice preparation to examine the possibility that some of these drugs might instead have an action at the strychnine-insensitive (SI) glycine binding site associated with the NMDA receptor. 2. D-2-Amino-5-phosphonovalerate (AP5) and 7-chlorokynurenate (7CK) had no significant effect on the height of the population spike recorded from the CA1 region in 1 mM Mg2+ medium, but both blocked the multiple population spikes recorded in Mg(2+)-free medium. The effect of 7CK, but not AP5, was reversed by 200 microM D-serine which is consistent with the known antagonist action of 7CK at the SI-glycine site. 3. A derivative of benzimidazole, which shows the clearest structural similarities to known SI-glycine site antagonists and ameliorates HPNS, mirrored the effects of 7CK although it was considerably less potent. 4. Gramine, which exacerbates HPNS, significantly increased the number of population spikes evoked in Mg(2+)-free medium. 5. Mephenesin, which is the most potent known drug in ameliorating HPNS, had no significant effect on the response recorded in 1 mM Mg2+ and significantly reduced the number of population spikes recorded in Mg(2+)-free medium, but this effect was only partially reversed by the addition of D-serine. 6. The results are consistent with the benzimidazole derivative, but not gramine, being an antagonist at the SI-glycine receptor. The results with mephenesin are equivocal but leave open the possibility that some of the drugs which are effective against HPNS act via an effect on excitatory NMDA receptor mediated transmission, rather than on inhibitory glycine-mediated transmission.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1910069PMC
http://dx.doi.org/10.1111/j.1476-5381.1994.tb14831.xDOI Listing

Publication Analysis

Top Keywords

population spikes
12
mg2+-free medium
12
high pressure
8
pressure neurological
8
neurological syndrome
8
possibility drugs
8
nmda receptor
8
spikes recorded
8
recorded mg2+-free
8
d-serine consistent
8

Similar Publications

Since the onset of the pandemic, many SARS-CoV-2 variants have emerged, exhibiting substantial evolution in the virus' spike protein, the main target of neutralizing antibodies. A plausible hypothesis proposes that the virus evolves to evade antibody-mediated neutralization (vaccine- or infection-induced) to maximize its ability to infect an immunologically experienced population. Because viral infection induces neutralizing antibodies, viral evolution may thus navigate on a dynamic immune landscape that is shaped by local infection history.

View Article and Find Full Text PDF

Voltage-gated potassium conductances [Formula: see text] play a critical role not only in normal neural function, but also in many neurological disorders and related therapeutic interventions. In particular, in an important animal model of epileptic seizures, 4-aminopyridine (4-AP) administration is thought to induce seizures by reducing [Formula: see text] in cortex and other brain areas. Interestingly, 4-AP has also been useful in the treatment of neurological disorders such as multiple sclerosis (MS) and spinal cord injury, where it is thought to improve action potential propagation in axonal fibers.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza viruses lead to severe respiratory illnesses and death in humans, exacerbated in individuals with underlying health conditions, remaining substantial global public health concerns. Here, we developed a bivalent replication-incompetent single-cycle pseudotyped vesicular stomatitis virus vaccine that incorporates both a prefusion-stabilized SARS-CoV-2 spike protein lacking a furin cleavage site and a full-length influenza A virus neuraminidase protein. Vaccination of K18-hACE2 or C57BL/6J mouse models generated durable levels of neutralizing antibodies, T cell responses, and protection from morbidity and mortality upon challenge with either virus.

View Article and Find Full Text PDF

The hippocampus forms memories of our experiences by registering processed sensory information in coactive populations of excitatory principal cells or ensembles. Fast-spiking parvalbumin-expressing inhibitory neurons (PV INs) in the dentate gyrus (DG)-CA3/CA2 circuit contribute to memory encoding by exerting precise temporal control of excitatory principal cell activity through mossy fiber-dependent feed-forward inhibition. PV INs respond to input-specific information by coordinating changes in their intrinsic excitability, input-output synaptic-connectivity, synaptic-physiology and synaptic-plasticity, referred to here as experience-dependent PV IN plasticity, to influence hippocampal functions.

View Article and Find Full Text PDF

The complex landscape of immune dysregulation in multisystem inflammatory syndrome in children with COVID-19.

Life Med

August 2024

Institute of Immunology and Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 311100, China.

The immune responses following SARS-CoV-2 infection in children are still under investigation. While coronavirus disease 2019 (COVID-19) is usually mild in the paediatric population, some children develop severe clinical manifestations or multisystem inflammatory syndrome in children (MIS-C) after infection. MIS-C, typically emerging 2-6 weeks after SARS-CoV-2 exposure, is characterized by a hyperinflammatory response affecting multiple organs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!