Ovules are the developmental precursors of seeds. In angiosperms the ovules are enclosed within the central floral organs, the carpels. We have identified a homeotic mutation in Arabidopsis, "bell" (bel1), which causes transformation of ovule integuments into carpels. In situ hybridization analysis shows that this mutation leads to increased expression of the carpel-determining homeotic gene AGAMOUS (AG) in the mutant ovules. Introduction of a constitutively expressed AG transgene into wild-type plants causes the ovules to resemble those of bel1 mutants. We propose that the BEL1 gene product directs normal integument development, in part by suppressing AG expression in this structure. Our results allow expansion of the current model of floral organ identity to include regulation of ovule integument identity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC44076PMC
http://dx.doi.org/10.1073/pnas.91.13.5761DOI Listing

Publication Analysis

Top Keywords

homeotic gene
8
arabidopsis floral
4
floral homeotic
4
gene
4
gene bell
4
bel1
4
bell bel1
4
bel1 controls
4
controls ovule
4
ovule development
4

Similar Publications

Leaf vein, an essential part of leaf architecture, plays significant roles in shaping the proper leaf size. To date, the molecular mechanisms governing leaf development including leaf venation patterning remains poorly understood in birch. Here, we performed the genome-wide identification of homeodomain-like (HD-like) superfamily genes using phylogenetic analysis and revealed the functional role of a potential HD-like gene in leaf growth and development using transgenic technology and transcriptomic sequencing.

View Article and Find Full Text PDF

Aging adversely affects the self-renewal and differentiation capabilities of stem cells, which impairs tissue regeneration as well as the homeostasis. Epigenetic mechanisms, specifically DNA methylation, play a key role in the maintenance of pluripotency in stem cells and regulation of pluripotency-related gene expression. Age-related modifications in methylation patterns could influence the expression of genes critical for stem cell potency maintenance, including transcription factors Nanog and Sox2.

View Article and Find Full Text PDF

This study examined the molecular phenotypes of adipose-derived stem cells (ASCs) and vaginal fibroblasts (VFBs) and assessed whether pelvic organ prolapse (POP) affects their biological properties. We performed RNA sequencing of paired ASCs and VFBs from six patients with POP and six controls (CTRL). The transcriptomes of POP and CTRL in either ASCs or VFBs were compared (DESeq2, false discovery rate (FDR) < 0.

View Article and Find Full Text PDF

Allelic transcriptomic profiling identifies the role of PRD-like homeobox genes in human embryonic-cleavage-stage arrest.

Dev Cell

January 2025

Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing 100191, China; State Key Laboratory of Female Fertility Promotion, Department of Obstetrics and Gynecology Peking University Third Hospital, Beijing 100191, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China. Electronic address:

Cleavage-stage arrest in human embryos substantially limits the success rate of infertility treatment, with maternal-to-zygotic transition (MZT) abnormalities being a potential contributor. However, the underlying mechanisms and regulators remain unclear. Here, by performing allelic transcriptome analysis on human preimplantation embryos, we accurately quantified MZT progression by allelic ratio and identified a fraction of 8-cell embryos, at the appropriate developmental time point and exhibiting normal morphology, were in transcriptionally arrested status.

View Article and Find Full Text PDF

Appropriate root system architecture (RSA) can improve alfalfa yield, yet its genetic basis remains largely unexplored. This study evaluated six RSA traits in 171 alfalfa genotypes grown under controlled greenhouse conditions. We also analyzed five yield-related traits in normal and drought stress environments and found a significant correlation (0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!