Metabolites of arachidonic acid are known to be formed in the mammalian central nervous system. When intact hippocampal slices were incubated in artificial cerebrospinal fluid, 12-hydroxyeicosatetraenoic acid and two isomers of hepoxilin A3 (8R and 8S) were released as measured by gas chromatography-mass spectrometry. These compounds were released in greater amounts in the presence of noradrenaline or when arachidonic acid was added to the slices. The neuronal actions of chemically derived preparations of 8R and 8S hepoxilins and the glutathione conjugate, hepoxilin A3-C, were examined using intracellular and whole-cell electrophysiological recordings in hippocampal CA1 neurons in vitro. All compounds had the excitatory effects of lowering spike threshold and decreasing spike frequency adaptation, and the inhibitory actions of membrane hyperpolarization, enhanced postspike train afterhyperpolarizations and increased inhibitory postsynaptic potentials or currents. A synthetic analog of hepoxilin A3-C, in which the glutathione moiety is placed at carbon position 9 instead of carbon position 11 as in hepoxilin A3-C, was inactive. The actions of the hepoxilins showed a sharp dose-response relationship, with minimal threshold or no effect at 3 nM (n = 21) and maximal effects at 10 nM (n = 33). There were no significant differences between the responses to either the 8R or 8S isomers, or between hepoxilin A3 and hepoxilin A3-C. These data suggest that hepoxilins formed by the brain have significant neuromodulatory actions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0306-4522(94)90075-2 | DOI Listing |
Neuroscience
February 1994
Department of Pharmacology, Hospital for Sick Children, University of Toronto, Ontario, Canada.
Metabolites of arachidonic acid are known to be formed in the mammalian central nervous system. When intact hippocampal slices were incubated in artificial cerebrospinal fluid, 12-hydroxyeicosatetraenoic acid and two isomers of hepoxilin A3 (8R and 8S) were released as measured by gas chromatography-mass spectrometry. These compounds were released in greater amounts in the presence of noradrenaline or when arachidonic acid was added to the slices.
View Article and Find Full Text PDFBr J Pharmacol
November 1992
Research Institute, Hospital for Sick Children, Toronto, Canada.
1. Hepoxilin A3 (8R and 8S isomers) (HxA3), hepoxilin A3-C (8R and 8S isomers) (HxA3-C) and trioxilin A3 (8S isomer) (TrXA3, the stable derivative of HxA3) were tested for their effects on helicoidal strips of guinea-pig isolated tracheae. 2.
View Article and Find Full Text PDFBr J Pharmacol
February 1992
Research Institute, Hospital for Sick Children, Toronto, Canada.
1. The vascular activity of two stereoisomers of hepoxilin A3 (HxA3) (8R and 8S) and of its glutathione conjugate, hepoxilin A3-C (HxA3-C) (8R and 8S), was investigated on rat helicoidal strips of thoracic aorta and longitudinal strips of portal vein. 2.
View Article and Find Full Text PDFBiochim Biophys Acta
June 1991
Research Institute, Hospital for Sick Children, Toronto, Canada.
In this paper we describe the release of hepoxilin A3 (HxA3) by intact pieces of the rat thoracic aorta and its stimulation by exogenous arachidonic acid but not by the calcium ionophore A23187. Homogenates of the rat aorta metabolize HxA3 via two competing pathways; one involves hepoxilin epoxide hydrolase to form the trihydroxy metabolite, trioxilin A3 (TrXA3), and a second pathway involves conjugation of HxA3 with glutathione via glutathione S-transferase to form a glutathione conjugate, which we refer to as hepoxilin A3-C (HxA3-C), a name based upon the accepted nomenclature for the glutathione conjugate leukotriene C. The formation of HxA3-C was dependent on the presence of reduced glutathione in the incubation medium.
View Article and Find Full Text PDFJ Biol Chem
December 1990
Research Institute, Hospital for Sick Children, Toronto, Canada.
1-14C-Labeled hepoxillin A3 is transformed by a purified preparation of glutathione S-transferase in the presence of glutathione into a glutathionyl conjugate in which the glutathione is covalently coupled to the carbon 11 position of hepoxilin A3. We have termed the glutathione conjugate hepoxilin A3-C in keeping with the established nomenclature for glutathione conjugates in the leukotriene series. Using [3H]glutathione as cosubstrate, the kinetics of the reaction were followed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!