The product of varicella-zoster virus gene 62 (VZV 140k) is a potent transactivator protein. We have identified a region within the DNA binding domain of VZV 140k that shows a striking similarity to the DNA recognition helix of the homeodomain, with an especially highly conserved quartet of residues, WLQN. The 140k protein has functional counterparts within the other alphaherpesviruses, which include the major transcriptional regulatory protein of HSV-1, (ICP4), and the WLQN region is highly conserved among the members of this family of viral transactivators. Substitution of VZV 140k residue lysine 548, just adjacent to the WLQN region, drastically reduces the DNA binding activity of the 140k DNA binding domain and the intact 140k mutant protein fails to activate gene expression. Substitutions of two other VZV 140k residues in this conserved WLQN region result in alterations to the DNA binding interaction and reduced transactivation activities. All three mutations act at the level of DNA recognition, as they have no apparent effect on the dimerization state, solubility or efficiency of expression of the mutant peptides.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC523576 | PMC |
http://dx.doi.org/10.1093/nar/22.3.270 | DOI Listing |
Nucleic Acids Res
March 1994
MRC Virology Unit, Glasgow, UK.
The product of varicella-zoster virus gene 62 (VZV 140k) is the functional counterpart of the major transcriptional regulatory protein of herpes simplex virus type 1 (HSV-1), ICP4. We have found that the purified bacterially expressed DNA binding domain of VZV 140k (residues 417-647) is a stable dimer in solution. As demonstrated by the appearance of a novel protein--DNA complex of intermediate mobility in gel retardation assays, following in vitro co-translation of a pair of differently sized VZV 140k DNA binding domain peptides, the 140k DNA binding domain peptide binds to DNA as a dimer.
View Article and Find Full Text PDFNucleic Acids Res
February 1994
MRC Virology Unit, Glasgow, UK.
The product of varicella-zoster virus gene 62 (VZV 140k) is a potent transactivator protein. We have identified a region within the DNA binding domain of VZV 140k that shows a striking similarity to the DNA recognition helix of the homeodomain, with an especially highly conserved quartet of residues, WLQN. The 140k protein has functional counterparts within the other alphaherpesviruses, which include the major transcriptional regulatory protein of HSV-1, (ICP4), and the WLQN region is highly conserved among the members of this family of viral transactivators.
View Article and Find Full Text PDFNucleic Acids Res
February 1993
MRC Virology Unit, Glasgow, UK.
Varicella-zoster virus gene 62 encodes a protein with predicted Mr of 140,000D (VZV 140k) that shares extensive predicted amino acid sequence homology with the major immediate early (IE) transcriptional regulator protein of herpes simplex virus type 1 (HSV-1) Vmw175. The integrity of highly conserved region 2 is essential for the DNA binding and transcriptional regulatory functions of Vmw175. Similarly, an insertion mutation in region 2 (codons 468-641) of 140k eliminates the transcriptional repression and activation functions of this protein.
View Article and Find Full Text PDFJ Gen Virol
December 1990
MRC Virology Unit, Glasgow, U.K.
Varicella-zoster (VZV) gene 62 encodes a protein with a predicted Mr of 140,000 (140K) which has considerable amino acid identity with the major immediate early (IE) protein Vmw175 (ICP4) of herpes simplex virus type I (HSV-1). Vmw175 is an essential virus polypeptide with a pivotal role in the activation of early and late viral gene expression and also in the repression of IE gene expression. The VZV 140K protein has been shown to function as a strong transcriptional activator in transfection assays and largely complements for the loss of Vmw175 function in HSV-1.
View Article and Find Full Text PDFJ Gen Virol
November 1990
MRC Virology Unit, Glasgow, U.K.
Varicella-zoster virus (VZV) gene 62 encodes a protein with a predicted Mr of 140,000 (VZV 140K) that shares considerable amino acid homology with the immediate early (IE) regulatory protein Vmw175 of herpes simplex virus type 1 (HSV-1) and is believed to be its functional equivalent. We have tested this hypothesis by insertion of VZV gene 62 (expressed from the HSV-1 IE3 promoter) into both IE3 gene loci in the short region repeats of the HSV-1 genome. The parent virus used for this manipulation was D30EBA, which is a variant of HSV-1 from which the majority of the Vmw175 coding sequences have been deleted.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!