EcoRI restriction fragment length polymorphism in human glycogen synthase gene.

Hum Genet

Physical Activity Sciences Laboratory, PEPS, Laval University, Ste-Foy, Québec, Canada.

Published: December 1993

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF00420954DOI Listing

Publication Analysis

Top Keywords

ecori restriction
4
restriction fragment
4
fragment length
4
length polymorphism
4
polymorphism human
4
human glycogen
4
glycogen synthase
4
synthase gene
4
ecori
1
fragment
1

Similar Publications

Isolation and characterization of ɸEcM-vB1 bacteriophage targeting multidrug-resistant Escherichia coli.

BMC Res Notes

January 2025

Department of Microbiology and Immunology, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt.

Objectives: The aim of this study is to screen for, isolate and characterize a bacteriophage designated ɸEcM-vB1 with confirmed lytic activity against multidrug-resistant (MDR) E. coli. Methods done in this research are bacteriophage isolation, purification, titer determination, bacteriophage morphology, host range determination, bacteriophage latent period and burst size determination, genomic analysis by restriction enzymes, and bacteriophage total protein content determination.

View Article and Find Full Text PDF

DNA-modifying enzymes are crucial in biological processes and have significant clinical implications. Traditional quantification methods often overlook enzymatic activity, the true determinants of enzymes' functions. We present hydrogel Bead-based Isothermal Detection (BEAD-ID), utilizing uniform hydrogel bead-based microreactors to evaluate DNA-modifying enzyme activity on-bead.

View Article and Find Full Text PDF

Background: Interferon-beta (IFN-β) is a cytokine with a wide range of biological and pharmaceutical applications, including multiple sclerosis (MS), cancer, some autoimmune disorders, and viral infectious diseases. Thus, many studies have been performed to develop novel strategies for the high-yield production of functional IFN-β in a cost-effective approach. Here, we aimed to improve the intracellular expression of IFN-β-1a in .

View Article and Find Full Text PDF

Pseudomonas aeruginosa is a complex nosocomial infectious agent responsible for numerous illnesses, with its growing resistance variations complicating treatment development. Studies have emphasized the importance of virulence factors OprE and OprF in pathogenesis, highlighting their potential as vaccine candidates. In this study, B-cell, MHC-I, and MHC-II epitopes were identified, and molecular linkers were active to join these epitopes with an appropriate adjuvant to construct a vaccine.

View Article and Find Full Text PDF
Article Synopsis
  • Plasmid-borne Type II restriction-modification (RM) systems cause post-segregational killing (PSK) due to the loss of restriction and modification enzymes during cell division, leading to the breakdown of unmethylated DNA.
  • A CRISPR interference method was developed to investigate PSK and found that different RM systems have distinct stability and recovery behaviors upon plasmid loss, particularly noting the Esp1396I system's limited duration of activity.
  • This research suggests that the dynamics of RM systems and host cell growth rates are crucial for understanding PSK, highlighting the need to consider the lifetimes of system components in modeling these processes.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!