Dopamine receptors labelled by PHNO.

Synapse

Department of Pharmacology, University of Toronto, Ontario, Canada.

Published: August 1993

Since the high-affinity state of dopamine D2 receptors may be abnormal in psychomotor diseases, it is desirable to develop a radioactive agonist to label this high-affinity site for possible clinical diagnostic use. (+)PHNO is a selective D2 agonist used to treat Parkinson's disease. We prepared [3H](+)PHNO from allyl-des-propyl(+)PHNO. In binding to dopamine receptors in homogenates of canine brain striata, [3H](+)PHNO had a dissociation constant of 0.35 nM in the absence of NaCl, and 0.56 nM in the presence of NaCl. Dopamine agonists and antagonists inhibited the binding of [3H](+)PHNO at drug concentrations similar to those inhibiting other [3H]ligands at D2 receptors, but not similar to those acting at D4 receptors. Approximately 90% of the total [3H](+)PHNO binding was specific. Guanilylimidodiphosphate markedly inhibited [3H](+)PHNO binding, suggesting that [3H](+)PHNO was binding primarily to the high-affinity state of dopamine D2 receptors rather than to D3 receptors. The density of the [3H](+)PHNO binding sites was equal to that of [3H]emonapride (or [3H]YM-09151-2), both densities of which were 1.5- to 2-fold higher than that of [3H]spiperone, compatible with the idea that [3H](+)PHNO binds to monomers of D2, while [3H]spiperone binds to dimers of D2. Although [3H](+)PHNO has good selectivity and affinity for the high-affinity state of D2, the [3H]ligand was sensitive to endogenous dopamine, since washing the tissue lowered the dissociation constant. For future in vivo labelling of D2 by an agonist, therefore, it will be essential to search for a related [3H]ligand with an even lower dissociation constant.

Download full-text PDF

Source
http://dx.doi.org/10.1002/syn.890140403DOI Listing

Publication Analysis

Top Keywords

dopamine receptors
16
[3h]+phno binding
16
high-affinity state
12
dissociation constant
12
[3h]+phno
9
state dopamine
8
dopamine
6
receptors
6
binding
6
receptors labelled
4

Similar Publications

Vector-borne diseases pose a severe threat to human life, contributing significantly to global mortality. Understanding the structure-function relationship of the vector proteins is pivotal for effective insecticide development due to their involvement in drug resistance and disease transmission. This study reports the structural and dynamic features of D1-like dopamine receptors (DARs) in disease-causing mosquito species, such as Aedes aegypti, Culex quinquefasciatus, Anopheles gambiae, and Anopheles stephensi.

View Article and Find Full Text PDF

Patent review of novel compounds targeting opioid use disorder (2018-2024).

Expert Opin Ther Pat

January 2025

Department of Pharmaceutical and Biomedical Sciences, Rudolph H. Raabe College of Pharmacy, Ohio Northern University, Ada, OH, USA.

Introduction: Opioids have served as a cornerstone in pain management for decades. However, the emergence of increasingly potent synthetic analogs brings forth a range of side effects, including respiratory depression, tolerance, dependence, constipation, and, more importantly, the development of severe and debilitating opioid use disorder (OUD). Search for therapeutics to mitigate OUD has been challenging and this has called for novel approaches that include design of small molecules targeting neuronal circuits involved in addiction (opioid, dopamine, serotonin, norepinephrine, and glutamate receptors, etc.

View Article and Find Full Text PDF

Dopamine D1 receptor activation in the striatum is sufficient to drive reinforcement of anteceding cortical patterns.

Neuron

January 2025

Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Neuroscience, University of California, Berkeley, Berkeley, CA 94720, USA; Weill Neurohub, University of California, Berkeley, Berkeley, CA 94720, USA; Molecular Biophysics and Integrated BioImaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA. Electronic address:

Timed dopamine signals underlie reinforcement learning, favoring neural activity patterns that drive behaviors with positive outcomes. In the striatum, dopamine activates five dopamine receptors (D1R-D5R), which are differentially expressed in striatal neurons. However, the role of specific dopamine receptors in reinforcement is poorly understood.

View Article and Find Full Text PDF

A nanoparticle-based wireless deep brain stimulation system that reverses Parkinson's disease.

Sci Adv

January 2025

New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.

Deep brain stimulation technology enables the neural modulation with precise spatial control but requires permanent implantation of conduits. Here, we describe a photothermal wireless deep brain stimulation nanosystem capable of eliminating α-synuclein aggregates and restoring degenerated dopamine neurons in the substantia nigra to treat Parkinson's disease. This nanosystem (ATB NPs) consists of gold nanoshell, an antibody against the heat-sensitive transient receptor potential vanilloid family member 1 (TRPV1), and β-synuclein (β-syn) peptides with a near infrared-responsive linker.

View Article and Find Full Text PDF

Cannabinoid-based Pharmacology for the Management of Substance Use Disorders.

Curr Top Behav Neurosci

January 2025

Department of Neurobiology, University of Maryland, School of Medicine, Baltimore, MD, USA.

In the last two decades, the endocannabinoid system has emerged as a crucial modulator of motivation and emotional processing. Due to its widespread neuroanatomical distribution and characteristic retrograde signaling nature, cannabinoid type I receptors and their endogenous ligands finely orchestrate somatic and axon terminal activity of dopamine neurons. Owing to these unique features, this signaling system is a promising pharmacological target to ameliorate dopamine-mediated drug-seeking behaviors while circumventing the adverse side effects of, for instance, dopaminergic antagonists.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!