Rhodamine 123 is a mitochondrial dye that is retained for prolonged periods by carcinoma cells. While investigating causes of retention of this dye, we found that 10 microM progesterone caused a rapid stimulation of efflux of rhodamine 123 within 15 min from KB V20C cells, which overexpress the multidrug resistance pump. Progesterone did not stimulate efflux from KB cells that do not overexpress the pump, and verapamil blocked rhodamine 123 efflux in the presence or absence of progesterone, indicating that rhodamine 123 is removed from KB V20C cells by the multidrug resistance pump. Progesterone, however, is unlikely to stimulate rhodamine 123 efflux by simply increasing pump activity for two reasons: (1) progesterone inhibited the efflux of daunomycin from KB V20C cells, so it did not stimulate efflux of all drugs, and (2) progesterone inhibited efflux of rhodamine 123 from L1210/VMDRC cells and had little effect on Adr MCF7 cells; both overexpress the multidrug resistance pump. In the experiments with KB V20C cells, progesterone was the most active steroid tested. At 10 microM, progesterone caused a 70-fold stimulation, desoxycorticosterone, testosterone, promegestone and estradiol about 20-fold, and others had little or no effect. Progesterone may act by a non-genomic mechanism to decrease intracellular binding of rhodamine 123, making the dye accessible to the multidrug resistance pump.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0006-2952(93)90331-p | DOI Listing |
Antibiotics (Basel)
December 2024
Division of Microbiology and Parasitology, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand.
Multidrug-resistant (MDR) bacteria, especially , are a major contributor to healthcare-associated infections globally, posing significant treatment challenges. This study explores the efficacy of (-)-epigallocatechin gallate (EGCG), a natural constituent of green tea, in combination with ampicillin (AMP) to restore the effectiveness of AMP against 40 isolated MDR strains. Antimicrobial activity assays were conducted to determine the minimum inhibitory concentrations (MIC) of EGCG using the standard microdilution technique.
View Article and Find Full Text PDFAdv Clin Exp Med
January 2025
Department of Head and Neck Oncology, Shaanxi Provincial Cancer Hospital Affiliated to Xi'an Jiaotong University, China.
Background: Thyroid carcinoma (TC), the most prevalent endocrine cancer worldwide, has become progressively more common, especially in women. Most TCs are epithelial-derived differentiated TCs, specifically papillary thyroid cancer (PTC). Although there are many therapeutic drugs available, curing TC is a difficult task.
View Article and Find Full Text PDF3 Biotech
January 2025
Department of Biotechnology, University of Calicut, Kerala Malappuram, 673635 India.
Rapamycin analogs are approved by the FDA for breast and renal cancer treatment. Hence, the possibility of nanoparticle-mediated delivery of Rapamycin could be examined. In the present study, PEGylated Gold-core shell iron oxide nanoparticles were used for the targeted delivery of Rapamycin, and R-Au-IONPs were formulated.
View Article and Find Full Text PDFEur J Pharmacol
December 2024
i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, 4200-135, Porto, Portugal; FFUP - Faculty of Pharmacy of the University of Porto, 4050-313, Porto, Portugal. Electronic address:
Multidrug resistance (MDR) is a major challenge in cancer research. Collateral sensitizers, compounds that exploit the enhanced defense mechanisms of MDR cells as weaknesses, are a proposed strategy to overcome MDR. Our previous work reported the synthesis of two novel Isoquinolinequinone (IQQ) N-oxides that induce collateral sensitivity in MDR ABCB1-overexpressing non-small cell lung cancer (NSCLC) and colorectal cancer cells.
View Article and Find Full Text PDFDrug Des Devel Ther
December 2024
Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China.
Purpose: Ciprofol is a novel intravenous anesthetic that has been increasingly used in clinical anesthesia and sedation. Studies suggested that ciprofol reduced oxidative stress and inflammatory responses to alleviate cerebral ischemia/reperfusion (I/R) injury, but whether ciprofol protects the heart against I/R injury and the mechanisms are unknown. Herein, we assessed the effects of ciprofol on ferroptosis during myocardial I/R injury.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!