It is well established that resistance to acute primary Toxoplasma gondii infection is mediated by a gamma interferon (IFN-gamma)-dependent mechanism. The present in vivo experiments were undertaken to investigate the cellular basis for this resistance. We show here that immunocompetent T. gondii-infected C57BL/6 (B6) mice treated with anti-IFN-gamma or with anti-Thy-1 or anti-asialo-GM1 antibodies die sooner than infected mice treated with antibodies that deplete both CD4+ and CD8+ T lymphocytes. Thy-1+ CD4- CD8- cells accumulated in the peritoneal cavities of B6 mice during the early stages of an intraperitoneal infection but did not accumulate in sham-infected control mice, and substantial numbers of Thy-1+ CD4- CD8- cells were recovered from the peritoneal cavities of infected B6 mice treated with antibodies that depleted CD4+ and CD8+ lymphocytes. Depletion of Thy-1+ cells reduced IFN-gamma to undetectable levels, whereas depletion of CD4+ and CD8+ cells did not reduce IFN-gamma levels. Thus T. gondii infection in immunocompetent B6 mice elicits Thy-1+ CD4- CD8- cells which either produce protective IFN-gamma themselves or control its production by other cells. It is likely that the function of these Thy-1+ CD4- CD8- cells is to control T. gondii tachyzoites during the early stages of primary infection before specific CD4(+)- and/or CD8(+)-dependent immunity develops.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC281298PMC
http://dx.doi.org/10.1128/iai.61.12.5174-5180.1993DOI Listing

Publication Analysis

Top Keywords

cd4+ cd8+
16
thy-1+ cd4-
16
cd4- cd8-
16
cd8- cells
16
gondii infection
12
cd8+ lymphocytes
12
mice treated
12
resistance acute
8
toxoplasma gondii
8
infected mice
8

Similar Publications

Bioinformatics Analysis of Programmed Death-1-Trastuzumab Resistance Regulatory Networks in Breast Cancer Cells.

Asian Pac J Cancer Prev

January 2025

Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281 Yogyakarta, Indonesia.

Objective: Programmed cell death-1 (PD-1, encoded by PDCD1) regulatory network participates in glioblastoma multiforme development. However, such a network in trastuzumab-resistant human epidermal growth factor receptor 2-positive (HER2+) breast cancer remains to be determined. Accordingly, this study was aimed to explore the PD-1 regulatory network responsible for the resistance of breast cancer cells to trastuzumab through a bioinformatics approach.

View Article and Find Full Text PDF

Objective: The progress made in cancer immunology has led to the development of innovative therapeutic strategies. However, despite these advances, the superficial characteristics of immune cells have been frequently overlooked: This oversight may be attributed to a limited understanding of the intricate relationships between immune cells and their microenvironment. This study seeks to address this limitation by comprehensively examining cell size and granularity in breast cancer (BC) patients and healthy donors (HD).

View Article and Find Full Text PDF

Background: Lower-grade glioma (LGG) exhibits significant heterogeneity in clinical outcomes, and current prognostic markers have limited predictive value. Despite the growing recognition of histone modifications in tumor progression, their role in LGG remains poorly understood. This study aimed to develop a histone modification-based risk signature and investigate its relationship with drug sensitivity to guide personalized treatment strategies.

View Article and Find Full Text PDF

Objective: An exploration of the influence of probiotics combined with immune checkpoint suppressors and chemotherapeutic agents on digestive system function, intestinal immunity and prognosis in patients with metastatic colorectal carcinoma.

Methods: This was a quasi-experimental study. During March 2019 to March 2020, 96 patients with metastatic colorectal carcinoma were arbitrarily classified into control group (n = 48) and intervention group (n = 48).

View Article and Find Full Text PDF

Targeted editing of CCL5 with CRISPR-Cas9 nanoparticles enhances breast cancer immunotherapy.

Apoptosis

January 2025

Department of Breast Cancer Surgery, Jiangxi Cancer Hospital & Institute, Jiangxi Clinical Research Center for Cancer, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Key Laboratory of Oncology, No. 519 Beijing East Road, Nanchang, Jiangxi, 330029, China.

Breast cancer remains one of the leading causes of cancer-related mortality among women worldwide. Immunotherapy, a promising therapeutic approach, often faces challenges due to the immunosuppressive tumor microenvironment. This study explores the innovative use of CRISPR-Cas9 technology in conjunction with FCPCV nanoparticles to target and edit the C-C Motif Chemokine Ligand 5 (CCL5) gene, aiming to improve the efficacy of breast cancer immunotherapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!