It is well known that mu and central beta rhythms start to desynchronize > 1 s before active hand or finger movement. To investigate whether the same cortical areas are involved in desynchronization of mu and central beta rhythms, 56-channel EEG recordings were made during right- and left-finger flexions in three normal subjects. The event-related desynchronization (ERD) was quantified in single EEG trials and classified by the Distinction Sensitive Learning Vector Quantization (DSLVQ) algorithm. This DSLVQ selects the most relevant features (electrode positions) for discrimination between the preparatory state for left- and right-finger movements. It was found that the most important electrode positions were close to the primary hand area. However, in all three subjects the focus of the central beta ERD was slightly anterior to the focus of mu desynchronization. This can be interpreted that different neural networks are involved in the generation of mu and central beta rhythms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0304-3940(94)90556-8 | DOI Listing |
Stroke Vasc Neurol
January 2025
Jizhou Clinical College, Tianjin Medical University, Tianjin, China
Background: Cognitive decline is a significant concern for stroke survivors, affecting their quality of life and increasing their burden on the healthcare system. DL-3-n-butylphthalide (butylphthalide) has shown efficacy in the short-term treatment of various cognitive impairments. This study evaluated the efficacy of butylphthalide in preventing cognitive decline over a 12-month period in patients with ischaemic stroke.
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China. Electronic address:
Inflammation underlies a wide variety of physiological and pathological processes, the Lipopolysaccharide (LPS)-induced inflammation model is widely recognized as a classical inflammatory paradigm, while Transforming growth factor-β (TGF-β) serves as a potent immunosuppressant capable of inhibiting immune responses and mitigating inflammation. However, its in vivo instability and the high cost associated with purification have imposed limitations on its clinical application. Therefore, we propose a therapeutic strategy for genetically modifying extracellular vesicles (HEVs) derived from HEK-293 T cells to incorporate TGF-β which holds potential for mitigating LPS-induced inflammation.
View Article and Find Full Text PDFInflamm Res
January 2025
Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 173 Ashley Ave, Charleston, SC, 29425, USA.
Background: Sepsis-associated encephalopathy (SAE) often results from neuroinflammation. Recent studies have shown that brain platelet-derived growth factor receptor β (PDGFRβ) cells, including pericytes, may act as early sensors of infection by secreting monocyte chemoattractant protein-1 (MCP-1), which transmits inflammatory signals to the central nervous system. The erythroblast transformation-specific (ETS) transcription factor Friend leukemia virus integration 1 (Fli-1) plays a critical role in inflammation by regulating the expression of key cytokines, including MCP-1.
View Article and Find Full Text PDFPharmaceutics
December 2024
PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal.
Background: Salbutamol, a short-acting β-agonist used in asthma treatment, is available in multiple formulations, including inhalers, nebulizers, oral tablets, and intravenous, intramuscular, and subcutaneous routes. Each formulation exhibits distinct pharmacokinetic (PK) and pharmacodynamic (PD) profiles, influencing therapeutic outcomes and adverse effects. Although asthma management predominantly relies on inhaled salbutamol, understanding how these formulations interact with patient-specific characteristics could improve personalized medicine approaches, potentially uncovering the therapeutic benefits of alternative formulations for an individual patient.
View Article and Find Full Text PDFNutrients
January 2025
Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University, 1 Hikarigaoka, Fukushima City 960-1295, Fukushima, Japan.
(1) Background: It has been reported that people affected by COVID-19, an infectious disease caused by SARS-CoV-2, suffer from various diseases, after infection. One of the most serious problems is the increased risk of developing diabetes after COVID-19 infection. However, a treatment for post-COVID-19 infection diabetes has not yet been established.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!