1. Glutamate-evoked increases in intracellular free H+ concentration ([H+]i) were recorded from single rat hippocampal neurons grown in primary culture with carboxy SNARF-based dual emission microfluorimetry. The possibility that this acidification resulted from altered energy metabolism was investigated. 2. The response to 10 microM glutamate (delta pH = 0.41 +/- 0.14, mean +/- SD) was blocked by the N-methyl-D-aspartate (NMDA) receptor antagonist CGS19755 (10 microM) and required extracellular Ca2+. 3. Substituting the metabolic inhibitor 2-deoxyglucose for glucose in the extracellular buffer prevented glutamate-induced acidification. 4. Ba2+, which carries charge through Ca2+ channels, including the Ca2+ uniporter on the inner mitochondrial membrane, substituted for Ca2+ in mediating glutamate-induced cytoplasmic acidification. 5. Microinjection of ruthenium red, a compound that blocks mitochondrial Ca2+ sequestration, significantly inhibited glutamate-induced acidification. 6. The mitochondrial uncoupler, carbonyl cyanide-p-trifluoromethoxyphenyl-hydrazone (FCCP, 0.1 microM), mimicked and partially occluded the glutamate-induced [H+]i increase. 7. These findings indicate that glutamate-induced Ca2+ loads are sequestered by mitochondria, uncouple respiration, and produce metabolic acidosis. The glutamate-induced acidification is symptomatic of metabolic stress and may indicate that mitochondria play an important role in glutamate-induced neuronal death.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/jn.1994.72.6.2563 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!