Alzheimer's disease and transgenic mice.

J Neural Transm Suppl

Center for Molecular Biology, Heidelberg (ZMBH), University of Heidelberg, Federal Republic of Germany.

Published: April 1995

Transgenic mice overexpressing the three major neuronal isoforms of the human amyloid precursor protein (APP), APP695, APP751, APP770 may provide an animal model for the analysis of the mechanisms and risk factors leading to amyloid deposition in Alzheimer's disease (AD) and Downs syndrome (DS). We have therefore generated transgenic mice expressing these isoforms under the control of the strong metallothionin promoter. Although we can demonstrate expression of transgenic APP in several tissues including brain, expression levels never exceeded those of the endogenous mouse APP. So far we have not been able to detect pathological changes resembling those of AD and DS. However we could demonstrate significant changes in spatial navigation tasks and motor behavior in the transgenic mice. The question remains open whether overexpression of APP is sufficient to induce Alzheimer pathology.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-3-7091-9350-1_17DOI Listing

Publication Analysis

Top Keywords

transgenic mice
16
alzheimer's disease
8
transgenic
5
disease transgenic
4
mice
4
mice transgenic
4
mice overexpressing
4
overexpressing three
4
three major
4
major neuronal
4

Similar Publications

Sleep alterations have been described in several neurodegenerative diseases yet are currently poorly characterized in amyotrophic lateral sclerosis (ALS). This study investigates sleep macroarchitecture and related hypothalamic signaling disruptions in ALS. Using polysomnography, we found that both patients with ALS as well as asymptomatic and mutation carriers exhibited increased wakefulness and reduced non-rapid eye movement sleep.

View Article and Find Full Text PDF

Sphingolipids serve as building blocks of membranes to ensure subcellular compartmentalization and facilitate intercellular communication. How cell type-specific lipid compositions are achieved and what is their functional significance in tissue morphogenesis and maintenance has remained unclear. Here, we identify a stem cell-specific role for ceramide synthase 4 (CerS4) in orchestrating fate decisions in skin epidermis.

View Article and Find Full Text PDF

Establishment of a Mouse Model with Cough Hypersensitivity via Inhalation of Citric Acid.

J Vis Exp

January 2025

State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University;

Cough is one of the most common symptoms of many respiratory diseases. Chronic cough significantly impacts quality of life and imposes a considerable economic burden. Increased cough sensitivity is a pathophysiological hallmark of chronic cough.

View Article and Find Full Text PDF

Background: Rho-associated kinases 1 and 2 (ROCK1 and ROCK2) regulate critical cell functions, including actomyosin contractility, apoptosis, and proliferation. Some studies suggest that ROCK inhibition may serve as a treatment for liver fibrosis. More investigation is needed to understand the role of hepatocyte ROCK signaling in vivo, especially in the context of profibrotic liver injury.

View Article and Find Full Text PDF

WBSCR16 is essential for mitochondrial 16S rRNA processing in mammals.

Nucleic Acids Res

January 2025

Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 573 Xujiahui Road, Huangpu District, Shanghai 200025, China.

Mitochondrial rRNAs play important roles in regulating mtDNA-encoded gene expression and energy metabolism subsequently. However, the proteins that regulate mitochondrial 16S rRNA processing remain poorly understood. Herein, we generated adipose-specific Wbscr16-/-mice and cells, both of which exhibited dramatic mitochondrial changes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!