A molecular map has been constructed for the rice genome comprised of 726 markers (mainly restriction fragment length polymorphisms; RFLPs). The mapping population was derived from a backcross between cultivated rice, Oryza sativa, and its wild African relative, Oryza longistaminata. The very high level of polymorphism between these species, combined with the use of polymerase chain reaction-amplified cDNA libraries, contributed to mapping efficiency. A subset of the probes used in this study was previously used to construct an RFLP map derived from an inter subspecific cross, providing a basis for comparison of the two maps and of the relative mapping efficiencies in the two crosses. In addition to the previously described PstI genomic rice library, three cDNA libraries from rice (Oryza), oat (Avena) and barley (Hordeum) were used in this mapping project. Levels of polymorphism detected by each and the frequency of identifying heterologous sequences for use in rice mapping are discussed. Though strong reproductive barriers isolate O. sativa from O. longistaminata, the percentage of markers showing distorted segregation in this backcross population was not significantly different than that observed in an intraspecific F2 population previously used for mapping. The map contains 1491 cM with an average interval size of 4.0 cM on the framework map, and 2.0 cM overall. A total of 238 markers from the previously described PstI genomic rice library, 250 markers from a cDNA library of rice (Oryza), 112 cDNA markers from oat (Avena), and 20 cDNA markers from a barley (Hordeum) library, two genomic clones from maize (Zea), 11 microsatellite markers, three telomere markers, eleven isozymes, 26 cloned genes, six RAPD, and 47 mutant phenotypes were used in this mapping project. Applications of a molecular map for plant improvement are discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1206261PMC
http://dx.doi.org/10.1093/genetics/138.4.1251DOI Listing

Publication Analysis

Top Keywords

molecular map
12
rice oryza
12
rice
8
rice genome
8
backcross population
8
markers
8
cdna libraries
8
described psti
8
psti genomic
8
genomic rice
8

Similar Publications

Cellular senescence is a phenotypic state that contributes to the progression of age-related disease through secretion of pro-inflammatory factors known as the senescence-associated secretory phenotype (SASP). Understanding the process by which healthy cells become senescent and develop SASP factors is critical for improving the identification of senescent cells and, ultimately, understanding tissue dysfunction. Here, we reveal how the duration of cellular stress modulates the SASP in distinct subpopulations of senescent cells.

View Article and Find Full Text PDF

Background: Peripheral nerve sheath tumors (PNSTs) encompass entities with different cellular differentiation and degrees of malignancy. Spatial heterogeneity complicates diagnosis and grading of PNSTs in some cases. In malignant PNST (MPNST) for example, single cell sequencing data has shown dissimilar differentiation states of tumor cells.

View Article and Find Full Text PDF

Background: Leptospirosis is an acute zoonotic disease caused by pathogenic , primarily transmitted to humans through contact with water or soil contaminated by the bacteria. It is globally distributed, with heightened prevalence in tropical regions. While prior studies have examined the pathophysiology, epidemiology, and risk factors of leptospirosis, few have explored trends and emerging topics in the field.

View Article and Find Full Text PDF

A Comparison of the Optical Properties of Fibre-Based Luminescent Solar Concentrators and Transparent Wood Towards Sustainable Waveguides.

Luminescence

January 2025

Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India.

Aiming at net-zero emissions, most international and national policies focus on sustainable development goals. Hence, there is an immediate need for replacing carbon-intensive materials with biomaterials. In this respect, this article presents a road-map for moving from polymeric to sustainable waveguides in optical devices.

View Article and Find Full Text PDF

Background: Broussonetia papyrifera, B. monoica, and B. kaempferi belong to the genus Broussonetia (Moraceae).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!