The G1 cyclins (CLNs) bind to and activate the CDC28 kinase during the G1 to S transition in Saccharomyces cerevisiae. Two G1 cyclins are regulated at the RNA level so that their RNAs peak at the G1/S boundary. In this report we show that the cell cycle regulation of CLN1 and CLN2 is partially determined by the restricted expression of SW14, a known trans-activator of SCB elements. When SWI4 is constitutively expressed or deleted, cell cycle regulation of CLN1/2 is reduced but not eliminated. In the absence of SwI6, another known regulator of both SCB and MCB elements, cell cycle regulation of the CLNs is also reduced, and the Start-dependence of HO transcription is eliminated. This indicates that SwI6 also plays an important role in the normal cell cycle regulation of all three promoters. When both SwI6 activity and the transcriptional regulation of SW14 are eliminated, cell cycle regulation is further reduced, indicating that these are two independent pathways of regulation. However, a twofold fluctuation in transcript levels still persists under these conditions. This reveals a third source of cell cycle control, which could affect SwI4 activity post-transcriptionally, or reflect the existence of another unidentified regulator of these promoters.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1206244PMC
http://dx.doi.org/10.1093/genetics/138.4.1015DOI Listing

Publication Analysis

Top Keywords

cell cycle
28
cycle regulation
20
regulation
8
cln1 cln2
8
saccharomyces cerevisiae
8
cerevisiae cyclins
8
cell
7
cycle
7
three independent
4
independent forms
4

Similar Publications

Oocyte maturation arrest (OMA) may occur at different stages, including the germinal vesicle (GV), metaphase I (MI), and metaphase II (MII). A total maturation arrest of human oocytes is rarely observed during fertilization (IVF). We have identified a case of infertile female for whom all oocytes fail to mature and are arrested at MI.

View Article and Find Full Text PDF

HemaScope: A Tool for Analyzing Single-cell and Spatial Transcriptomics Data of Hematopoietic Cells.

Genomics Proteomics Bioinformatics

January 2025

Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Research Unit of Hematologic Malignancies Genomics and Translational Research of Chinese Academy of Medical Sciences, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.

Single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics (ST) techniques hold great value in evaluating the heterogeneity and spatial characteristics of hematopoietic cells within tissues. These two techniques are highly complementary, with scRNA-seq offering single-cell resolution and ST retaining spatial information. However, there is an urgent demand for well-organized and user-friendly toolkits capable of handling single-cell and spatial information.

View Article and Find Full Text PDF

Biphasic in vitro oocyte maturation (IVM) can be offered as a patient-friendly alternative to conventional ovarian stimulation in in vitro fertilization (IVF) patients predicted to be hyper-responsive to ovarian stimulation. However, cumulative live birth rates after IVM per cycle are lower than after conventional ovarian stimulation for IVF. In different animal species, supplementation of IVM media with oocyte-secreted factors (OSFs) improves oocyte developmental competence through the expression of pro-ovulatory genes in cumulus cells.

View Article and Find Full Text PDF

Cervical cancer is a common tumor in women and one of the common causes of cancer death in women. Due to the aggressive and non-specific nature of traditional chemotherapy, there is a growing need for new treatment modalities. Currently, tumor immunotherapy is increasingly garnering attention as a disruptive treatment approach.

View Article and Find Full Text PDF

The p60 subunit of the chromatin assembly factor-1 complex, that is, chromatin assembly factor-1 subunit B (CHAF1B), is a histone H3/H4 chaperone crucial for the transcriptional regulation of cell differentiation and self-renewal. CHAF1B is overexpressed in several cancers and may represent a potential target for cancer therapy. However, its expression and clinical significance in lung squamous-cell carcinoma (LUSC) remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!