AI Article Synopsis

  • Microglial cells, the immune cells of the CNS, are distinct from monocytes/macrophages found in other tissues and are believed to originate from a unique lineage early in development.
  • Recent studies tested whether astrocytes, a type of glial cell, influence the morphological and functional characteristics of microglia compared to blood monocytes and spleen macrophages.
  • Findings showed that microglia develop into more complex, branched forms when cultured on astrocyte layers, while monocytes/macrophages also acquire similar traits but do not do so when cultured alone on other substrates like fibroblasts.

Article Abstract

Several morphological and functional properties of microglial cells, the resident immunoeffector cells of the central nervous system (CNS), differ from those of monocytes/macrophages in other tissues. Microglia are assumed to derive from myelonocytic lineage, possibly as a distinct subpopulation that diverges from a common cell line early in ontogeny, invades the CNS, proliferates, and differentiates into ameboid and then ramified microglia. We tested the hypothesis that some morphological and functional properties of microglia are induced in myelomonocytic cells by nervous tissue, specifically astrocytes. In the present in vitro studies we compared the differentiation of microglia, blood monocytes, and spleen macrophages on acellular substrates and on monolayers of astrocytes and fibroblasts. On acellular substrates, microglial cells at first acquire an ameboid morphology; later they show a few short, unbranched processes. On monolayers of pure astrocytes, microglial cells at first also differentiate into ameboid cells, but after 5 to 7 days they start to develop processes with large lamellopodial tips. These lengthen and branch continuously during the next 2 weeks in vitro, demarcating a round to oval territory around the small ellipsoid cell body. By contrast, on monolayers of fibroblasts the microglial cells develop an ameboid morphology, but do not grow the typical long branched processes of the ramified form. Blood monocytes and spleen macrophages behave indistinguishably from microglia both on acellular and cellular substrates, i.e., on astroglia they develop the ramified form, while on fibroblasts they retain the ameboid shape. When microglia, macrophages, or monocytes are cultured on coverslips on top of astrocytic monolayers, i.e., physically separated from the astroglia, but exposed to the medium conditioned by astrocytes, a significant proportion of them also develop the ramified shape. These findings indicate that the ramified shape of microglia is induced by astrocytes. Since this morphology can also be induced in blood monocytes and macrophages, we take this to be further evidence for the proposition that microglial cells are derived from the myelomonocytic lineage, and, moreover, that properties of resident macrophages are largely determined by tissue components of their host organ.

Download full-text PDF

Source
http://dx.doi.org/10.1002/glia.440120402DOI Listing

Publication Analysis

Top Keywords

microglial cells
20
blood monocytes
16
monocytes spleen
12
spleen macrophages
12
cells
9
monolayers astrocytes
8
astrocytes morphology
8
morphological functional
8
functional properties
8
microglia induced
8

Similar Publications

In recent decades, researchers and clinicians have increasingly focused on glial cell function. One of the primary mechanisms influencing these functions is through extracellular vesicles (EVs), membrane-bound particles released by cells that are essential for intercellular communication. EVs can be broadly categorized into four main types based on their size, origin, and biogenesis: large EVs, small EVs (sEVs), autophagic EVs, and apoptotic bodies.

View Article and Find Full Text PDF

Intracerebral hemorrhage (ICH) is the most common subtype of hemorrhagic stroke causing significant morbidity and mortality. Previously clinical treatments for ICH have largely been based on a single pathophysiological perspective, and there remains a lack of curative interventions. Following the rupture of cerebral blood vessels, blood metabolites activate resident immune cells such as microglia and astrocytes, and infiltrate peripheral immune cells, leading to the release of a series of inflammatory mediators.

View Article and Find Full Text PDF

Mitochondria-Associated Endoplasmic Reticulum Membranes in Microglia: One Contact Site to Rule Them all.

Contact (Thousand Oaks)

January 2025

Department of Biomedicine, Centro de Investigaciones Biológicas Margarita Salas, CSIC, 28040 Madrid, Spain.

Microglia, the resident immune cells of the central nervous system (CNS), play a crucial role in maintaining tissue homeostasis by monitoring and responding to environmental changes through processes such as phagocytosis, cytokine production or synapse remodeling. Their dynamic nature and diverse functions are supported by the regulation of multiple metabolic pathways, enabling microglia to efficiently adapt to fluctuating signals. A key aspect of this regulation occurs at mitochondria-associated ER membranes (MAM), specialized contact sites between the ER and mitochondria.

View Article and Find Full Text PDF

SARS-CoV-2 infection in microglia and its sequelae: What do we know so far?

Brain Behav Immun Health

December 2024

James & Lillian Martin Centre, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK.

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused the COVID-19 pandemic. After the success of therapeutics and worldwide vaccination, the long-term sequelae of SARS-CoV-2 infections are yet to be determined. Common symptoms of COVID-19 include the loss of taste and smell, suggesting SARS-CoV-2 infection has a potentially detrimental effect on neurons within the olfactory/taste pathways, with direct access to the central nervous system (CNS).

View Article and Find Full Text PDF

The vagus nerve (VN) is the primary parasympathetic nerve, providing two-way communication between the body and brain through a network of afferent and efferent fibers. Evidence suggests that altered VN signaling is linked to changes in the neuroimmune system, including microglia. Dysfunction of microglia, the resident innate immune cells of the brain, is associated with various neurodevelopmental disorders, including schizophrenia, attention deficit hyperactive disorder (ADHD), autism spectrum disorder (ASD), and epilepsy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!