Characterization of a rice gene family encoding root-specific proteins.

Plant Mol Biol

Institute of Developmental and Molecular Biology, Texas A&M University, College Station 77843-3155.

Published: January 1995

Two cDNA clones (RCc2 and RCc3) corresponding to mRNAs highly expressed only in root tissues of rice (Oryza sativa L.) seedlings were characterized. Respectively, they encode polypeptides of 146 (14.5 kDa) and 133 amino acids (13.4 kDa) that share high (> 70%) sequence similarity with a polypeptide encoded by a cDNA (ZRP3) encoding an mRNA preferentially expressed in young maize roots. Genomic DNA blot analysis revealed that they are members of a small gene family and RCg2, the gene corresponding to RCc2, was isolated. A 1656 bp 5'-upstream sequence of RCg2 was translationally fused to a beta-glucuronidase (GUS) reporter gene and stable introduction of the chimeric construct into rice was confirmed by PCR and genomic DNA blot analyses. Histochemical analysis of transgenic rice plants containing the full-length chimeric gene showed high levels of GUS activity in mature cells and the elongation and maturation zones of primary and secondary roots, and in the root caps, but no GUS activity was detected in root meristematic regions. Surprisingly, high GUS activity was also detected in leaves of the same plants. This raises the possibility that the RCg2 5'-upstream element may not be sufficient for the proper spatial control of root specificity in transgenic rice.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF00020180DOI Listing

Publication Analysis

Top Keywords

gus activity
12
gene family
8
genomic dna
8
dna blot
8
transgenic rice
8
activity detected
8
gene
5
characterization rice
4
rice gene
4
family encoding
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!