Thrombin stimulates cytosolic calcium mobilization and tritiated thymidine incorporation in rat glomerular mesangial cells. This effect may be mediated by a thrombin receptor similar to the receptor found in human platelets. In order to test this possibility, a series of analogues of the thrombin receptor peptide, SFLL-RNPNDKYEPF, was evaluated for their effects on mesangial cells. Analogues of the thrombin receptor peptide containing five, six, seven and 14 amino acids were as efficacious as thrombin with respect to calcium mobilization and thymidine incorporation, although they were significantly less potent. The dissimilarity in potency between thrombin and the thrombin receptor peptides is consistent with the kinetics of the proposed mechanism of action of the enzyme, since the cleavage by thrombin of its receptor results in a tethered ligand which is at a relatively high concentration compared to the free peptides in solution. Those thrombin receptor peptide analogues which showed decreased activity in platelets were tested in mesangial cells. Removal of serine at position one, N-acetylation, or replacement of the phenylalanine at position two with alanine resulted in analogues which were inactive in stimulating mesangial cell proliferation or calcium mobilization. In addition, those analogues which had no stimulatory effects in mesangial cells were not antagonists of SFLLRN-mediated calcium mobilization and thymidine incorporation in mesangial cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0898-6568(94)00043-3 | DOI Listing |
Biosensors (Basel)
January 2025
Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland.
Since lead can cause severe effects on living organisms' health and life, the regular monitoring of Pb levels in water and soil is of particular significance. Recently, it was shown that lead ions can also be detected using affinity-based biosensors, namely, using aptamers as recognition elements. In most cases, thrombin binding aptamer (TBA) was utilized; however, there are more examples of DNA aptamers which could also serve that purpose.
View Article and Find Full Text PDFAnal Chem
January 2025
Department of Anesthesiology, Tokyo Medical and Dental University, Graduate School of Medical and Dental Sciences, 1-5-45 Yushima, Bunkyo-ku 113-8510, Tokyo, Japan.
The hemostatic function of platelets is complementary to blood coagulation. However, traditional platelet function tests have primarily focused on measuring platelet aggregation, reducing their clinical effectiveness for antiplatelet drug monitoring. To address this limitation, we propose a new test principle that evaluates platelet function and the effects of antiplatelet drugs through blood coagulation reactions.
View Article and Find Full Text PDFSemin Thromb Hemost
January 2025
Department of Neurology, Sheba Medical Center, Tel Ha'Shomer, Israel.
Coagulation factors are intrinsically expressed in various brain cells, including astrocytes and microglia. Their interaction with the inflammatory system is important for the well-being of the brain, but they are also crucial in the development of many diseases in the brain such as stroke and traumatic brain injury. The cellular effects of coagulation are mediated mainly by protease-activated receptors.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
January 2025
Institute of Experimental Hematology and Transfusion Medicine, University Hospital Bonn, Germany.
Background: Clinical expressivity of the thrombophilic factor V Leiden (FVL) mutation is highly variable. Recently, we demonstrated an increased APC (activated protein C) response in asymptomatic FVL carriers compared with FVL carriers with a history of venous thromboembolism (VTE) after in vivo coagulation activation. Here, we further explored this association using a recently developed ex vivo model based on patient-specific endothelial colony-forming cells (ECFCs).
View Article and Find Full Text PDFJ Thromb Haemost
January 2025
Department of Medicine, McMaster University; Department of Biochemistry and Biomedical Sciences, McMaster University; Thrombosis and Atherosclerosis Research Institute, McMaster University and Hamilton Health Sciences.
Thrombin is the central mediator of hemostasis, where it converts fibrinogen to fibrin, activates upstream factors to promote coagulation, activates factor XIII and thrombin-activatable fibrinolysis inhibitor to stabilize fibrin, mediates anticoagulation, and modulates cellular activity via cell surface receptors. Thus, regulation of thrombin activity is essential to the hemostatic balance. Thrombin is regulated by positively charged surface domains that surround the active site.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!