Insulin action is subject to regulation at the level of the insulin receptor and at postreceptor levels. Starvation and diabetes are often associated with insulin resistance for glucose metabolism in various tissues. In muscle, fat, and liver, we examined whether changes in the functionality of the insulin receptor correlated with changes in insulin action in the starved and diabetic state. Insulin-stimulated receptor autophosphorylation reflects an early physiologic step in transmission of the insulin signal, and for that reason, changes in autophosphorylation activity of the insulin receptor were used as a marker to determine the functionality of the insulin receptor. Glycoprotein fractions prepared from skeletal muscle, diaphragm, epididymal fat, and liver of control, 3-day starved, short-term 3-day (S) diabetic (streptozotocin, 70 mg/kg intravenously), and long-term 6-month (L) diabetic (neonatal streptozotocin 100 micrograms/g intraperitoneally) rats were used in this study. Receptor activity was monitored by measuring insulin-stimulated [gamma-32P]adenosine triphosphate (ATP) receptor autophosphorylation. In addition, to obtain information about whether changes in receptor autophosphorylation are related to changes in receptor number, relative numbers of high-affinity insulin receptors were determined by affinity cross-linking of [125I]insulin to the receptor alpha-chain and quantitation of the yield of labeled receptor alpha-chain. Control, starved, S diabetic, and L diabetic rats had plasma insulin and glucose levels of 294 +/- 42, 90 +/- 24, 48 +/- 12, and 216 +/- 30 pmol/L and 6.7 +/- 0.2, 4.1 +/- 0.2, 23.3 +/- 0.7, and 21.6 +/- 2.9 mmol/L, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)

Download full-text PDF

Source
http://dx.doi.org/10.1016/0026-0495(95)90157-4DOI Listing

Publication Analysis

Top Keywords

insulin receptor
20
receptor
12
receptor autophosphorylation
12
+/- +/-
12
insulin
11
changes insulin
8
receptor number
8
starvation diabetes
8
insulin action
8
fat liver
8

Similar Publications

Background: Atrial fibrillation (AF) is the most prevalent arrhythmia encountered in clinical practice. Triglyceride glucose index (Tyg), a convenient evaluation variable for insulin resistance, has shown associations with adverse cardiovascular outcomes. However, studies on the Tyg index's predictive value for adverse prognosis in patients with AF without diabetes are lacking.

View Article and Find Full Text PDF

Purpose: Glucagon-like peptide-1 receptor agonists (GLP-1RAs) have risen exponentially in usage and have been shown to exert neuroprotective and anti-inflammatory effects across multiple organ systems. This study investigates whether GLP-1RAs influence the risk for age-related ocular diseases.

Design: Retrospective cohort study.

View Article and Find Full Text PDF

Background: The inheritance of the short allele, encoding the serotonin transporter (SERT) in humans, increases susceptibility to neuropsychiatric and metabolic disorders, with aging and female sex further exacerbating these conditions. Both central and peripheral mechanisms of the compromised serotonin (5-HT) system play crucial roles in this context. Previous studies on SERT-deficient (Sert) mice, which model human SERT deficiency, have demonstrated emotional and metabolic disturbances, exacerbated by exposure to a high-fat Western diet (WD).

View Article and Find Full Text PDF

Potential Effect of Cinnamaldehyde on Insulin Resistance Is Mediated by Glucose and Lipid Homeostasis.

Nutrients

January 2025

Instituto de Bioeletricidade Celular (IBIOCEL): Ciência & Saúde, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Rua João Pio Duarte Silva, 241, Sala G 301, Florianópolis 88038-000, SC, Brazil.

Diabetes mellitus is a metabolic syndrome that has grown globally to become a significant public health challenge. Hypothesizing that the plasma membrane protein, transient receptor potential ankyrin-1, is a pivotal target in insulin resistance, we investigated the mechanism of action of cinnamaldehyde (CIN), an electrophilic TRPA1 agonist, in skeletal muscle, a primary insulin target. Specifically, we evaluated the effect of CIN on insulin resistance, hepatic glycogen accumulation and muscle and adipose tissue glucose uptake.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!