The X-ray structure of the complex of actin with gelsolin segment 1 revealed the presence of two calcium ions, one bound at an intramolecular site within segment 1 and the other bridging the segment directly to actin. Although earlier calcium binding studies at pH 8.0 revealed only a single calcium trapped in the complex (and also in the binary gelsolin-actin complex), it is here shown that two calcium ions are bound under the conditions of crystallization at physiological pH. Mutation of acidic residues in either actin or segment 1 involved in ligation of the intermolecular calcium ion resulted in loss of one of the bound calcium ions at pH < 7, but not at pH 8. Thus the calcium ion trapped in the segment 1-actin complex is that located at the intramolecular site. The implications of this for gelsolin function are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0014-5793(95)00109-mDOI Listing

Publication Analysis

Top Keywords

calcium ions
12
calcium
9
gelsolin segment
8
segment 1-actin
8
1-actin complex
8
ions bound
8
intramolecular site
8
calcium ion
8
segment
6
complex
5

Similar Publications

The controllable regulation of immune and osteogenic processes plays a critical role in the modification of biocompatible materials for tissue regeneration. In this study, titanium dioxide-europium coatings (MAO/Eu) were prepared on the surface of a titanium alloy (Ti-6Al-4V) a one-step process combining microarc oxidation (MAO) and doping. The incorporation of Eu significantly improved the hydrophilic and mechanical properties of the TiO coatings without altering their morphology.

View Article and Find Full Text PDF

Probiotics have brought many health benefits to the human body. However, their viability during gastrointestinal transit is a concern. Therefore, this study selected Mesona chinensis polysaccharide (MCP), an edible natural polysaccharide, and constructed a new type of microcapsules using MCP as raw material to prepare cross-linked calcium ions through a microfluidic system as an ideal intestinal targeting carrier to achieve precise delivery of bioactive substances.

View Article and Find Full Text PDF

With the increasing concern of potential loss of transgenic mosquitoes which are candidates as new tools for mosquito-borne disease control, methods for cryopreservation are actively under investigation. Methods to cryopreserve Anopheles gambiae sperm have recently been developed, but there are no artificial insemination or in vitro fertilization tools available. As a step to achieve this, we sought to identify a suitable medium for in vitro incubation of An.

View Article and Find Full Text PDF

Biomimetic Silk Nanoparticle Manufacture: Calcium Ion-Mediated Assembly.

ACS Biomater Sci Eng

January 2025

Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral St., Glasgow G4 0RE,Scotland,U.K.

Silk has emerged as an interesting candidate among protein-based nanocarriers due to its favorable properties, including biocompatibility and a broad spectrum of processing options to tune particle critical quality attributes. The silk protein conformation during storage in the middle silk gland of the silkworm is modulated by various factors, including the most abundant metallic ion, calcium ion (Ca). Here, we report spiking of liquid silk with calcium ions to modulate the silk nanoparticle size.

View Article and Find Full Text PDF

Carbon capture and storage (CCS) and CO-based geothermal energy are promising technologies for reducing CO emissions and mitigating climate change. Safe implementation of these technologies requires an understanding of how CO interacts with fluids and rocks at depth, particularly under elevated pressure and temperature. While CO-bearing aqueous solutions in geological reservoirs have been extensively studied, the chemical behavior of water-bearing supercritical CO remains largely overlooked by academics and practitioners alike.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!