Splice variants of the human EP3 receptor for prostaglandin E2.

Eur J Biochem

Research Laboratories of Schering AG, Schering AG, Berlin, Germany.

Published: February 1995

The EP3 receptor for prostaglandin E2 (PGE2) mediates various biological activities such as uterine contraction, inhibition of gastric acid secretion, presynaptic inhibition of neurotransmitter release and potentiation of platelet aggregation. In an attempt to understand the molecular basis of this diversity of biological function, we cloned full-length cDNAs encoding EP3 receptors for PGE2 from human uterus cDNA libraries. Seven cDNA variants were identified which code for six distinct EP3-receptor isoforms. Sequencing revealed that the receptor isoforms differ in their intracellular C-terminal domains. Southern blot experiments indicate that the isoforms are generated by alternative splicing. The EP3-receptor gene is expressed in various tissues with high expression in kidney and pancreas, as demonstrated by Northern blot analysis. All receptors, stably expressed in baby hamster kidney (BHK) cells, bind PGE2 specifically with similar Kd of 2.2-5.8 nM. The binding of [3H]PGE2 is competed with by unlabelled prostaglandins in the order sulprostone (a PGE2-like agonist) approximately PGE2 >> PGF2 alpha > Iloprost (a prostacyclin analogue) > PGD2, which is specific for EP3 receptors. Analysis of the signal-transduction pathways demonstrated that all receptors respond with inhibition of forskolin-induced cAMP accumulation with an IC50 of 0.1-3 nM PGE2. In addition, some isoforms induce an increase in intracellular free calcium ([Ca2+]i) at PGE2 concentrations greater than or equal to 10 nM. These results may offer an explanation for the different physiological responses observed in various tissues following activation of EP3 receptors.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1432-1033.1995.tb20223.xDOI Listing

Publication Analysis

Top Keywords

ep3 receptors
12
ep3 receptor
8
receptor prostaglandin
8
pge2
6
ep3
5
receptors
5
splice variants
4
variants human
4
human ep3
4
prostaglandin ep3
4

Similar Publications

The urothelium and lamina propria (LP) contribute to sensations of bladder fullness by releasing multiple mediators, including prostaglandins (PGs) and adenosine 5'-triphosphate (ATP), that activate or modulate functions of cells throughout the bladder wall. Mediators that are simultaneously released in response to bladder distention likely influence each other's mechanisms of release and action. This study investigated whether PGs could alter the extracellular hydrolysis of ATP by soluble nucleotidases (s-NTDs) released in the LP of nondistended or distended bladders.

View Article and Find Full Text PDF

Breast cancer became the most prevalent malignancy among women, and HER2 expression status is critical for treatment decisions. With the emergence of ADC drugs, HER2 low-expressing patients who previously did not respond well to traditional anti-HER2 therapies may now benefit. In this study, immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH) were applied to assess HER2 expression in 349 patients with HER2-non-positive breast cancer.

View Article and Find Full Text PDF

Prostaglandins are naturally occurring local mediators that can participate in the modulation of the cardiovascular system through their interaction with Gs/Gi-coupled receptors in different tissues and cells, including platelets. Thrombin is one of the most important factors that regulates platelet reactivity and coagulation. Clinical trials have consistently shown that omega-3 fatty acid supplementation lowers the risk for cardiovascular mortality and morbidity.

View Article and Find Full Text PDF

EP4: A prostanoid receptor that modulates insulin signalling in rat skeletal muscle cells.

Cell Signal

February 2025

Division of Cell Signalling and Immunology, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK. Electronic address:

The EP4 (prostaglandin E2) receptor plays a crucial role in myogenesis and skeletal muscle regeneration, yet its involvement in regulating insulin-dependent metabolic pathways is not well characterised. Our research investigates the expression of EP4 in rat skeletal L6 myotubes and its impact on insulin signalling. We found that activation of EP4 by selective agonists disrupts insulin signalling and insulin-stimulated glucose uptake.

View Article and Find Full Text PDF

Prostaglandin E production in the brainstem parabrachial nucleus facilitates the febrile response.

Temperature (Austin)

September 2024

Division of Neurobiology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.

Our body temperature is normally kept within a narrow range of 1°C. For example, if our body temperature rises, such as in a hot environment or due to strenuous exercise, our thermoregulatory system will trigger a powerful heat defense response with vasodilation, sweating, and lowered metabolism. During fever, which often involves body temperatures of up to 41°C, this heat defense mechanism is apparently inhibited; otherwise, the rising body temperature would be immediately combated, and fever would not be allowed to develop.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!