Cytomegalovirus (CMV) genes were detected by in situ hybridization in 25 Chinese patients with viral myocarditis (VMC). The positive hybridization signals were found in cardiomyocytes (6 cases, 24%), capillary endothelial cells (4 cases, 16%) and interstitial cells (7 cases, 28%). The difference between VMC and control group (16 cases died of brain trauma and 10 cases of congenital heart diseases was statistically significant. There was no definite pathomorphological relationship between the detection of CMV genes and myocardial lesions. The results suggest that CMV infection may be one of the causes of myocarditis and chronic stimulation of the immune system induced by CMV may be a possible pathogenesis of this disease.

Download full-text PDF

Source

Publication Analysis

Top Keywords

situ hybridization
8
viral myocarditis
8
cmv genes
8
cells cases
8
cases
5
detection cytomegalovirus
4
cytomegalovirus genome
4
genome situ
4
hybridization paraffin
4
paraffin embedded
4

Similar Publications

De Novo Chromosomes 3q and 5q Chromothripsis Leads to a 5q14.3 Microdeletion Syndrome Presentation: Case Report and Review of the Literature.

Am J Med Genet A

January 2025

The Cain Pediatric Neurology Research Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, USA.

5q14.3 microdeletion syndrome (MIM#613443) is a neurodevelopmental disorder (NDD) involving copy number loss of multiple genes including Myocyte enhancer factor 2C (MEF2C) gene in the q14.3 region of chromosome 5.

View Article and Find Full Text PDF

Unlabelled: Although both Taurine Upregulated Gene 1(TUG1) and Human Antigen R (HuR) play significant regulatory roles in Cerebral Ischemic Reperfusion Injury (CIRI), their potential pro-angiogenesis mechanisms in CIRI remain unclear.

Methods: Herein, the biological roles of TUG1 and HuR in angiogenesis are first confirmed. Following that, HuR-binding VEGFA mRNAs are identified via the Fluorescence In Situ Hybridization (FISH), RNA Immunoprecipitation (RIP), and Cross-Linking Immunoprecipitation (CLIP) assays.

View Article and Find Full Text PDF

Circular RNAs (circRNAs), as a class of noncoding RNA molecules with a circular structure exhibit high stability and spatiotemporal-specific expression, making them ideal cancer biomarkers for liquid biopsy. Herein, a new photoelectrochemical (PEC) biosensor for a highly sensitive circRNA assay in the whole blood of lung cancer patients was designed based on CRISPR/Cas13a-programmed Cu nanoclusters (Cu NCs) and a -scheme covalent organic framework/silver sulfide (T-COF/AgS) composite. This -scheme T-COF/AgS composite accelerates electron transfer and produces an excellent initial photocurrent.

View Article and Find Full Text PDF

Background: Regeneration plays a key role in energy recycling and homeostasis maintenance. Planarians, as ideal model animals for studying regeneration, stem cell proliferation, and apoptosis, have the strong regenerative abilities. Considerable evidence suggests that ubiquitin plays an important role in maintaining homeostasis and regulating regeneration, but the function of Ubiquitin specific proteases 7 (Usp7) on regeneration in planarians remains elusive.

View Article and Find Full Text PDF

Chromosome distribution of four LTR retrotransposons and 18 S rDNA in coffea eugenioides.

Sci Rep

January 2025

Laboratório de Citogenética e Citometria, Departamento de Biologia Geral, Universidade Federal de Viçosa. ZIP, 36.570-900, Viçosa - MG, Brazil.

Repetitive sequences are recognized for their roles in plant genome organization and function. Mobile elements are notable repeatome sequences due to their intrinsic mutagenic potential, which is related to the origin of adaptive novelties. Understanding the genomic organization and dynamics of the repeatome is fundamental to enlighten their role in plant genome evolution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!