Regulation of histamine- and UTP-induced increases in Ins(1,4,5)P3, Ins (1,3,4,5)P4 and Ca2+ by cyclic AMP in DDT1 MF-2 cells.

Br J Pharmacol

Department of Pharmacology/Clinical Pharmacology, Groningen Institute for Drugs Studies, University of Groningen, The Netherlands.

Published: January 1995

1. Stimulation of P2U-purinoceptors with UTP or histamine H1-receptors with histamine gave rise to the formation of inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) and inositol 1,3,4,5-tetrakisphosphate (Ins(1,3,4,5)P4) in DDT1 MF-2 smooth muscle cells. 2. Stimulation of P2U-purinoceptors or histamine H1-receptors caused an increase in cytoplasmic Ca2+, consisting of an initial peak, representing the release of Ca2+ from internal stores and a sustained phase representing Ca2+ influx. 3. The P2U-purinoceptor-mediated Ca(2+)-entry mechanism was more sensitive to UTP than Ca(2+)-mobilization (EC50: 3.3 microM +/- 0.4 microM vs 55.1 microM +/- 9.2 microM), in contrast to these processes activated by histamine H1-receptors (EC50: 5.8 microM +/- 0.6 microM vs 3.1 microM +/- 0.5 microM). 4. Pre-stimulation of cells with several adenosine 3':5'-cyclic monophosphate (cyclic AMP) elevating agents, reduced the histamine H1-receptor-mediated formation of Ins(1,4,5)P3 and Ins(1,3,4,5)P4. Forskolin completely inhibited Ins(1,4,5)P3 formation (IC50: 158 +/- 24 nM) whereas Ins(1,3,4,5)P4 formation was inhibited by only 45% (IC50: 173 +/- 16 nM). The P2U-purinoceptor-mediated production of these inositol phosphates was not affected by cyclic AMP. 5. Forskolin and isoprenaline reduced the histamine-induced increase in cytoplasmic Ca2+, as measured in Ca2+ containing medium and in nominally Ca(2+)-free medium but did not change the UTP-induced increase in cytoplasmic Ca2+. 6. These results clearly demonstrate that cyclic AMP differentially regulates components of the histamine induced phospholipase C signal transduction pathway. Furthermore, cyclic AMP does not affect the phospholipase C pathway activated by stimulation of P2U-purinoceptors in DDT1 MF-2 cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1510268PMC
http://dx.doi.org/10.1111/j.1476-5381.1995.tb13238.xDOI Listing

Publication Analysis

Top Keywords

cyclic amp
20
microm +/-
16
+/- microm
16
ddt1 mf-2
12
stimulation p2u-purinoceptors
12
histamine h1-receptors
12
increase cytoplasmic
12
cytoplasmic ca2+
12
mf-2 cells
8
cells stimulation
8

Similar Publications

Melatonin (Mel) is known for various biological function, such as antioxidant and anti-inflammatory capabilities, as well as its ability to modulate immune responses, which can protect mitochondria and improve the prognosis of sepsis-associated acute kidney injury (SA-AKI). However, there is a multitude of theories regarding how Mel exerts its immune-modulating functions, with no consensus reached as of yet. We propose the protective effects of Mel on mitochondria are closely related to the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway in the immune-inflammatory response.

View Article and Find Full Text PDF

The development of small molecule drugs that target protein binders is the central goal in medicinal chemistry. During the lead compound development process, hundreds or even thousands of compounds are synthesized, with the primary focus on their binding affinity to protein targets. Typically, IC or EC values are used to rank these compounds.

View Article and Find Full Text PDF

Neutrophil extracellular traps potentiate effector T cells via endothelial senescence in uveitis.

JCI Insight

January 2025

State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, China.

Autoimmune uveitis (AU) is a sight-threatening ocular autoimmune disorder that often manifests as retinal vasculitis. Increased neutrophil infiltration around retinal vessels has been reported during the progression of AU, while how they function is not fully recognized. Neutrophil extracellular traps (NETs), produced by activated neutrophils, have been suggested to be detrimental in autoimmune diseases.

View Article and Find Full Text PDF

TDP43 augments astrocyte inflammatory activity through mtDNA-cGAS-STING axis in NMOSD.

J Neuroinflammation

January 2025

Department of Neurology, Center for Medical Research on Innovation and Translation, Institute of Clinical Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China.

Abnormality in transactivating response region DNA binding protein 43 (TDP43) is well-recognized as the pathological hallmark of neurodegenerative diseases. However, the role of TDP43 in neuromyelitis optica spectrum disorder (NMOSD) remains unknown. Here, our observations demonstrate an upregulation of TDP43 in both in vitro and in vivo models of NMOSD, as well as in biological samples from NMOSD patients.

View Article and Find Full Text PDF

The role of GPR81-cAMP-PKA pathway in endurance training-induced intramuscular triglyceride accumulation and mitochondrial content changes in rats.

J Physiol Sci

January 2025

Institute of Sports Science, Sichuan University, Chengdu, People's Republic of China; School of Physical Education and Sports, Sichuan University, Chengdu, People's Republic of China; Department of Physical Education, Sichuan University, No. 24 South Section 1, Yihuan Road, 610065, Chengdu, China. Electronic address:

The athlete's paradox phenomenon involves the accumulation of intramuscular triglycerides (IMTG) in both insulin-resistant and insulin-sensitive endurance athletes. Nevertheless, a complete understanding of this phenomenon is yet to be achieved. Recent research indicates that lactate, a common byproduct of physical activity, may increase the accumulation of IMTG in skeletal muscle.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!