An ideal cement base material in order to protect the pulpal tissue from several external irritations (microbial, mechanical, thermal, galvanic and osmotic irritations) must present the following requirements: to attach or bond to the residual dentin, to be biocompatible, to present suitable physicomechanical, antimicrobial and optical properties, to be color stable, easy to use and rapid to set. Thermal phenomena developed during the mixing and setting are a factor influencing the biocompatibility properties of these materials. Cement base materials are used under various types of filling materials (amalgams, composite resins, gold and porcelain inlays) and are placed in contact with the dentin that contains exposed dentinal tubules. The purpose of this study was to investigate the possible exothermic reaction of these materials and to measure the developing temperatures for a time period from their mixing up to the completion of their setting. We studied the following types of cement base materials: a) Zinc oxide eugenol cement, b) Zinc phosphate cement, c) Zinc polycarboxylate cement and d) Glass ionomer cement both light- and self-cured. From the obtained results we observed that ZOE cements developed the lowest temperatures ranging from 32.8 degrees C to 37 degrees C, while Zinc phosphate cements developed the highest temperatures ranging from 44.4 degrees C to 52 degrees C. The other two types of materials Zinc polycarboxylate and Glass ionomer cements developed biocompatible temperatures ranging from 38 degrees C to 40.8 degrees C, which usually do not cause deteriorations and harms to the pulp. We concluded that the ZOE cements presented the best thermal behaviour followed by Zinc polycarboxylate and Glass ionomer cements. Hence, these materials can be safely used without causing any pulpal response.
Download full-text PDF |
Source |
---|
Environ Sci Pollut Res Int
January 2025
CERENA - Civil Engineering Research and Innovation for Sustainability, IST-ID, Av. António José de Almeida 12, 1049-001, Lisbon, Portugal.
Polypropylene (PP) disposable face masks (DFMs) are essential for limiting airborne infectious diseases. This study examines the behavior of DFMs under three scenarios: (i) exposure to the natural environment, (ii) simulated high-energy aquatic environments through an abrasion test, and (iii) incorporation into cement-based mortars. In the natural weathering experiment, after 117 days, the DFMs exhibited photodegradation, resulting in chemical alterations in carbonyl and hydroxyl groups.
View Article and Find Full Text PDFClin Adv Periodontics
January 2025
Department of Dentistry and Oral Surgery, Keio University School of Medicine, Tokyo, Japan.
Background: Successful periodontal regeneration depends on primary wound closure and interdental papilla preservation. In this case study, we introduce a novel triangle papilla access approach (T-PAA) performed under a surgical microscope for treating interdental bone defects. In this novel approach, buccal incisions were used to access root surfaces and bone defects, avoiding interdental papilla incisions and preventing papillary collapse and necrosis.
View Article and Find Full Text PDFJ Dent Sci
December 2024
Faculty of Dentistry, The University of Hong Kong, Hong Kong, S.A.R., China.
The World Health Organization (WHO) has added glass ionomer cement (GIC) to the WHO Model List of Essential Medicines since 2021, which represents the most efficacious, safe and cost-effective medicines for priority conditions. With the potential increase in the use of GIC, this review aims to provide an overview of the clinical application of GIC with updated evidence in restorative and preventive dentistry. GIC is a versatile dental material that has a wide range of clinical applications, particularly in restorative and preventive dentistry.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Gansu Industry Technology Center of Transportation Construction Materials Research and Application, Lanzhou Jiaotong University, Lanzhou 730070, China.
In order to study the effect of the crushing process on the fine separation of reclaimed asphalt pavement (RAP) and the mechanical properties of cement-stabilised aggregate mixed with RAP, four crushing processes, namely small mesh hammer crushing, hammer crushing, jaw crushing, and double roller crushing, were used to separate the aggregate from asphalt in RAP materials. The effect of crushing on the grading characteristics and agglomeration condition of RAP material was investigated. RAP cement-stabilised aggregates were prepared and analysed for their mechanical properties and micro-morphology using RAP materials obtained from fine separation.
View Article and Find Full Text PDFJ Dent
January 2025
Senior Research and Teaching Assistant, Clinic of Reconstructive Dentistry, Center for Dental Medicine, University of Zurich, Plattenstrasse 11, Zurich 8032, Switzerland. Electronic address:
Objectives: A new abutment-free implant connection allows for direct screwing of FDPs on implants to avoid complications caused by cement rests or screw loosening, which may affect to screw torque and load distribution. The objective of this study was to test the initial (Fi) and final failure (Ff) loads and torque changes of abutment-free monolithic zirconia CAD-CAM fixed dental prostheses (FDPs) compared to titanium FDPs on different abutment designs.
Methods: Three-unit screw-retained FDPs (n = 50) on two implants (n = 100) were divided into groups (n = 10) based on the implant-abutment connection and material of the supra-structure: (1) abutment-free monolithic CAD-CAM zirconia FDP (Abut-free-Zr), (2) abutment-free veneered titanium FDPs (Abut-free-Ti), (3) monolithic zirconia FDPs with titanium base abutments (Zr-Ti-Base), (4) monolithic zirconia FDPs on multi-unit abutments (Zr-MU), (5) veneered titanium FDP on multi-unit abutments (Ti-MU).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!