Biological membrane outer surfaces are negatively charged and interact with positively charged calcium ion during calcium uptake. Positively charged polycations such as polyarginine bind to membranes with high affinity, displacing bound calcium from the membrane. We tested the effect of polyarginine on uptake of calcium by brush-border membrane vesicles and examined the responses in terms of membrane fluidity by electron paramagnetic resonance (EPR). Polyarginine inhibited the saturable component of calcium uptake by a mechanism combining inhibition characteristics of strontium (competitive) and magnesium (non-competitive). Unlike the inhibition of non-saturable calcium uptake by strontium and magnesium, polyarginine increased kD, the rate constant for non-saturable calcium uptake, by a concentration dependent mechanism. These effects of polyarginine on calcium uptake were associated with decreased membrane fluidity at the uptake temperature. These findings are consistent with a role for surface negative charge in determining both saturable and non-saturable calcium uptake. Increased membrane fluidity is associated with decreased saturable and increased non-saturable calcium uptake. Although increased fluidity might be involved in the increased kD for non-saturable uptake, the concentration-specific stimulating effect of polyarginine suggests a gating mechanism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0005-2736(94)00260-v | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!