In previous papers, we have described the discovery of a new series of compounds, 4,5,6,7-tetrahydro-5-methylimidazo[4,5,1-jk][1,4]benzodiazepin-2(1 H)- ones, TlBO (1 and 1a), with potent anti-HIV-1 activity and the synthesis of analogues to better define the structure-activity relationships (SAR) in terms of changes in substituents at the N-6 position and variations of the five-membered urea ring as well as the seven-membered diazepine ring. This paper describes the synthesis of TlBO analogues with various substitutents on the aromatic ring and their SAR in terms of anti-HIV-1 properties. Substituents on the 8-position furnished the most rewarding results and gave a large improvement in potency versus the parent compound. These included halogen, thiomethyl, and methyl. Analogues like 8-cyano, -methoxy, and -acetylene were equipotent, while 8-amino, -acetylamino, -dimethylamino, and -nitro were inactive (Table 1). Substituents at the 9-position tended to have little effect on activity, and 10-substituents decreased activity. The 8-chloro compound 6a with IC50 = 0.0043 microM is currently under clinical development.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jm00005a006DOI Listing

Publication Analysis

Top Keywords

anti-hiv-1 activity
8
sar terms
8
synthesis anti-hiv-1
4
activity
4
activity 4567-tetrahydro-5-methylimidazo-[451-jk][14]benzodiazepin-
4
4567-tetrahydro-5-methylimidazo-[451-jk][14]benzodiazepin- 21h-one
4
21h-one tlbo
4
tlbo derivatives
4
derivatives previous
4
previous papers
4

Similar Publications

Purpose Of Review: Natural killer (NK) cells are integral components of the innate immune system, serving a vital function in eliminating virally infected cells. This review highlights the significance of CXCR5+ NK cells in the context of chronic HIV/SIV infection and viral control.

Recent Findings: Controlled HIV/SHIV infection results in a substantial increase in the population of CXCR5+ NK cells within the B-cell follicles of secondary lymphoid organs (SLOs).

View Article and Find Full Text PDF

Two Disaccharide-Bearing Polyethers, K-41B and K-41Bm, Potently Inhibit HIV-1 via Mechanisms Different from That of Their Precursor Polyether, K-41A.

Curr Issues Mol Biol

November 2024

Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning 530021, China.

The screening of novel antiviral agents from marine microorganisms is an important strategy for new drug development. Our previous study found that polyether K-41A and its analog K-41Am, derived from a marine Streptomyces strain, exhibit anti-HIV activity by suppressing the activities of HIV-1 reverse transcriptase (RT) and its integrase (IN). Among the K-41A derivatives, two disaccharide-bearing polyethers-K-41B and K-41Bm-were found to have potent anti-HIV-1 activity in vitro.

View Article and Find Full Text PDF

We have shown that virus-specific CD4 and CD8 memory T cells (TM) induce autophagy after T cell receptor (TCR) engagement to provide free glutamine and fatty acids, including in people living with HIV-1 (PLWH). These nutrients fuel mitochondrial ATP generation through glutaminolysis and fatty acid oxidation (FAO) pathways, to fulfill the bioenergetic demands for optimal IL-21 and cytotoxic molecule production in CD4 and CD8 cells, respectively. Here, we expand our knowledge on how the metabolic events that occur in the mitochondria of virus-specific TM down-stream of the autophagy are regulated.

View Article and Find Full Text PDF

Acquired immunodeficiency syndrome (AIDS) poses a significant threat to life. Antiretroviral therapy is employed to diminish the replication of the human immunodeficiency virus (HIV), extending life expectancy and improving the quality of patients' lives. These HIV-1 integrase inhibitors form robust covalent interactions with Mg ions, contributing to their tight binding, thereby inhibiting the integration of viral DNA into the CD4 cell DNA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!