Of mice and Marfan: genetic linkage analyses of the fibrillin genes, Fbn1 and Fbn2, in the mouse genome.

Mamm Genome

Department of Microbiology and Immunology, Jefferson Cancer Institute, Philadelphia, Pennsylvania 19107.

Published: November 1994

The fibrillin genes, FBN1 and FBN2, encode large extracellular matrix glycoproteins involved in the structure and function of microfibrils. Mutations in FBN1 are found in patients with Marfan syndrome, a heritable connective tissue disease that primarily affects the cardiovascular, ocular, and skeletal systems. We extended the studies of these genes by determining their chromosomal position in the mouse genome. Restriction fragment length polymorphisms (RFLPs) between the progenitors of an interspecific backcross involving AEJ/Gn and Mus spretus mice were used to establish the segregation patterns of the murine homologs, Fbn1 and Fbn2, in the backcross progeny. The results position Fbn1 between the B2m and Illa genes on mouse Chromosome (Chr) 2 and establish its candidacy for the Tight skin (Tsk) mutation. The results position Fbn2 between the D18Mit35 and Pdgfrb loci in the central region of mouse Chr 18. Fbn2 maps near three mutations [bouncy (bc), plucked (pk), and shaker with syndactyly (sy)] and may be a candidate for the pk mutation.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF00426075DOI Listing

Publication Analysis

Top Keywords

fbn1 fbn2
12
fibrillin genes
8
genes fbn1
8
mouse genome
8
fbn1
5
fbn2
5
mice marfan
4
marfan genetic
4
genetic linkage
4
linkage analyses
4

Similar Publications

Extracellular Matrix Protein Signatures of the Outer and Inner Zones of the Rat Adrenal Cortex.

J Proteome Res

August 2024

Institute of Biomedical Sciences, Department of Anatomy, University of São Paulo, Av. Prof. Lineu Prestes, 2415, Butantã, São Paulo, SP 05508-000, Brazil.

This study analyzes the extracellular matrix (ECM) signatures of the outer (OF = capsule + subcapsular + zona glomerulosa cells) and inner fractions (IF = zona fasciculata cells) of the rat adrenal cortex, which comprise two distinct microenvironment niches. Proteomic profiles of decellularized OF and IF samples, male and female rats, identified 252 proteins, with 32 classified as ECM-component and ECM-related. Among these, 25 proteins were differentially regulated: 17 more abundant in OF, including Col1a1, Col1a2, Col6a1, Col6a2, Col6a3, Col12a1, Col14a1, Lama5, Lamb2, Lamc1, Eln, Emilin, Fbln5, Fbn1, Fbn2, Nid1, and Ltbp4, and eight more abundant in IF, including Col4a1, Col4a2, Lama2, Lama4, Lamb1, Fn1, Hspg2, and Ecm1.

View Article and Find Full Text PDF

High-Throughput Genomics Identify Novel Variants in Severe Neonatal Marfan Syndrome and Congenital Heart Defects.

Int J Mol Sci

May 2024

Neonatal Congenital Heart Laboratory, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.

Fibrillin-1 and fibrillin-2, encoded by and , respectively, play significant roles in elastic fiber assembly, with pathogenic variants causing a diverse group of connective tissue disorders such as Marfan syndrome (MFS) and congenital contractural arachnodactyly (CCD). Different genomic variations may lead to heterogeneous phenotypic features and functional consequences. Recent high-throughput sequencing modalities have allowed detection of novel variants that may guide the care for patients and inform the genetic counseling for their families.

View Article and Find Full Text PDF

Genotype-phenotype profile of global ASPH-associated ectopia lentis and clinical findings from a Chinese cohort.

Gene

October 2024

Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China; NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 200031, China. Electronic address:

Background: Traboulsi syndrome is an under-recognized syndromic form of ectopia lentis (EL) caused by the aspartate beta-Hydroxylase (ASPH) variant. The genotype-phenotype profile of ASPH-associated disease is poorly understood due to the rarity of the condition.

Methods: We conducted targeted next-generation sequencing and bioinformatics analysis to identify potentially pathogenic ASPH variants in the cohort.

View Article and Find Full Text PDF

Genetic models of fibrillinopathies.

Genetics

January 2024

Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba QLD 4102, Australia.

The fibrillinopathies represent a group of diseases in which the 10-12 nm extracellular microfibrils are disrupted by genetic variants in one of the genes encoding fibrillin molecules, large glycoproteins of the extracellular matrix. The best-known fibrillinopathy is Marfan syndrome, an autosomal dominant condition affecting the cardiovascular, ocular, skeletal, and other systems, with a prevalence of around 1 in 3,000 across all ethnic groups. It is caused by variants of the FBN1 gene, encoding fibrillin-1, which interacts with elastin to provide strength and elasticity to connective tissues.

View Article and Find Full Text PDF

Genetic testing and diagnostic strategies of fetal skeletal dysplasia: a preliminary study in Wuhan, China.

Orphanet J Rare Dis

October 2023

Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, 430030, China.

Background: Fetal skeletal dysplasia is a diverse group of degenerative diseases of bone and cartilage disorders that can lead to movement disorder and even death. This study aims to evaluate the diagnostic yield of sonographic examination and genetic testing for fetal skeletal dysplasia.

Methods: From September 2015 to April 2021, the study investigated 24 cases with suspected short-limb fetuses, which were obtained from Tongji Hospital affiliated to Tongji Medical College of Huazhong University of Science and Technology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!